Skip to main content

High Throughput Production and Screening Strategies for Creating Advanced Biomaterials and Chemical Sensors

  • Chapter
Combinatorial Methods for Chemical and Biological Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 982 Accesses

Abstract

Development of new materials is needed for numerous applications in engineering, medical, and scientific arenas. In this chapter, we describe some of our research efforts that focus on developing strategies and tools for high throughput production and screening to create advanced biomaterials and chemical sensors. Using our developed tools, we are able to produce and screen a wide array of materials in a short period of time. In several current embodiments, the system can readily produce and fully screen 100–1,000 samples/day. Our developed automated systems can provide results with minimal user input, yet with better precision and accuracy in comparison to traditional manual methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bastioli, C., Handbook of Biodegradable Polymers. Rapra Technology Limited: Shawbury, 2005

    Google Scholar 

  2. De Jong, S. J.; Arias, E. R.; Rijkers, D. T. S.; Van Nostrum, C. F.; Kettenes-Van den Bosch, J. J.; Hennink, W. E., New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer 2000, 42, 2795–2802

    Article  Google Scholar 

  3. Middleton, J. C.; Tipton, A. J., Synthetic biodegradable polymers as medical devices. Medical Plastics and Biomaterials 1998, 31–38

    Google Scholar 

  4. Shikanov, A.; Kumar, N.; Domb, A. J., Biodegradable polymers: An update. Israel Journal of Chemistry 2005, 45, 393–399

    Article  CAS  Google Scholar 

  5. Albertsson, A. C.; Varma, I., Aliphatic Polyesters: Synthesis, Properties and Applications. In Degradable Aliphatic Polyesters, Albertsson, A. C., Ed. Springer: New York, 2002; Vol. 157, pp 1–40

    Google Scholar 

  6. Amass, W.; Amass, A.; Tighe, B., A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 1998, 47, 89–144

    Article  CAS  Google Scholar 

  7. Park, J. H.; Ye, M.; Park, K., Biodegradable polymers for microencapsulation of drugs. Molecules 2005, 10, 146–161

    Article  CAS  Google Scholar 

  8. Ikada, Y.; Tsuji, H., Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun. 1999, 21(3), 117–132

    Article  Google Scholar 

  9. Middleton, J. C.; Tipton, A. J., Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346

    Article  CAS  Google Scholar 

  10. Milella, E.; Barra, G.; Ramires, P. A.; Leo, G.; Aversa, P.; Romito, A., Poly(l-lactide)acid/ alginate composite membranes for guided tissue regeneration. J. Biomed. Mater. Res. 2001, 57, 248–257

    Article  CAS  Google Scholar 

  11. Chen, C.-C.; Chueh, J.-Y.; Tseng, H.; Huang, H.-M.; Lee, S.-Y., Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 2003, 24, 1167–1173

    Article  CAS  Google Scholar 

  12. Gunatillake, P.; Adhikari, R., Biodegradable synthetic polymers for tissue engineering. Euro. Cells Mater. 2003, 5, 1–16

    CAS  Google Scholar 

  13. Daniels, A. U.; Chang, M. K. O.; Andriano, K. P., Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J. Appl. Biomat. 1990, 1, 57–78

    Article  CAS  Google Scholar 

  14. Utracki, L. A., Commercial Polymer Blends. 1st ed.; Springer,: New York, 1998

    Google Scholar 

  15. Ljungberg, N.; Wesslen, B., Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 2005, 6(3), 1789–1796

    Article  CAS  Google Scholar 

  16. Brinker, C. J.; Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic: Boston, 1990; p xiv, p. 908

    Google Scholar 

  17. Kato, M.; Sakai-Kato, K.; Toyo’oka, T., Silica sol–gel monolithic materials and their use in a variety of applications. Journal of separation science 2005, 28, 1893–1908

    Article  CAS  Google Scholar 

  18. Tang, Y.; Tehan, E. C.; Tao, Z.; Bright, F. V., Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability. Analytical Chemistry 2003, 75(10), 2407–2413

    Article  CAS  Google Scholar 

  19. McEvoy, A. K.; McDonagh, C.; MacCraith, B. D., Analyst 1996, 121, 785–788

    Article  CAS  Google Scholar 

  20. Dunbar, R. A.; Jordan, J. D.; Bright, F. V., Development of chemical sensing platforms based on sol–gel-derived thin films: origin of film age vs. performance trade-offs. Analytical Chemistry 1996, 68, 604–610

    Article  CAS  Google Scholar 

  21. Rupcich, N.; Goldstein, A.; Brennan, J. D., Optimization of sol–gel formulations and surface treatments for the development of pin-printed protein microarrays. Chemistry of Material 2003, 15(9), 1803–1811

    Article  Google Scholar 

  22. Ingersoll, C. M.; Bright, F. V., Using sol–gel-based platforms for chemical sensors. CHEMTECH 1997, 27, 26–31

    CAS  Google Scholar 

  23. McDonagh, C.; MacCraith, B. D.; McEvoy, A. K., Tailoring of sol–gel films for optical sensing of oxygen in gas and aqueous phase. Analytical Chemistry 1998, 70(1), 45–50

    Article  CAS  Google Scholar 

  24. Lev, O.; Tsionsky, M.; Rabinovich, L.; Glezer, V.; Sampath, S.; Rankrator, I.; Gun, J., Analytical Chemistry 1995, 67, 22A–30A

    Article  CAS  Google Scholar 

  25. Collinson, M. M.; Howells, A. R., Sol gel and electrochemistry: Research at the intersection. Analytical Chemistry 2000, 72(21), 702A–709A

    Article  CAS  Google Scholar 

  26. Schottner, G., Hybrid sol–gel-derived polymers: applications of multifunctional materials. Chemistry of Materials 2001, 13, 3422–3435

    Article  CAS  Google Scholar 

  27. Maruszewski, K.; W. Strek, M. J.; Ucyk, A., Technology and applications of sol gel materials. Radiation Effects and Defects in Solids 2003, 158, 439–450

    Article  CAS  Google Scholar 

  28. Ciriminna, R.; Pagliaro, M., Catalysis by sol–gels: An advanced technology for organic chemistry. Current Organic Chemistry 2004, 8, 1851–1862

    Article  CAS  Google Scholar 

  29. Mahltig, B.; Haufe, H.; Bottcher, H., Functionalisation of textiles by inorganic sol–gel coatings. Journal of Materials Chemistry 2005, 15, 4385–4398

    Article  CAS  Google Scholar 

  30. Sanchez, C.; Julian, B.; Belleville, P.; Popall, M., Applications of hybrid organic-inorganic nanocomposites. Journal of Materials Chemistry 2005, 15, 3559–3592

    Article  CAS  Google Scholar 

  31. Innocenzi, P.; Lebeau, B., Organic-inorganic hybrid materials for non-linear optics. Journal of Materials Chemistry 2005, 15, 3821–3831

    Article  CAS  Google Scholar 

  32. Ogoshi, T.; Chujo, Y., Organic-inorganic polymer hybrids prepared by the sol gel method. Composite Interfaces 2005, 11, 539–566

    Article  CAS  Google Scholar 

  33. Avnir, D.; Coradin, T.; Lev, O.; Livage, J., Recent bio-applications of sol–gel materials. Journal of Materials Chemistry 2006, 16, 1013–1030

    Article  CAS  Google Scholar 

  34. Pagliaro, M.; Ciriminna, R.; Man, M. W. C.; Campestrini, S., Better chemistry through ceramics: the physical basis of the outstanding chemistry of ORMOSIL. Journal of physical chemistry B 2006, 110, 1976–1988

    Article  CAS  Google Scholar 

  35. Park, T. G.; Cohen, S.; Langer, R., Poly (l-lactic acid)/Pluronic blends: Characterization of phase separation behavior, degradation, and morphology and use as protein-releasing matrices. Macromolecules 1992, 25, 116–122

    Article  CAS  Google Scholar 

  36. Langer, R.; Chasin, M., Biodegradable Polymers as Drug Delivery Systems. Marcel Dekker: New York, NY, 1990

    Google Scholar 

  37. Gombotz, W. R.; Pettit, D. K., Biodegradable polymers for protein and peptide drug delivery. Bioconjugate Chem. 1995, 6, 332–351

    Article  CAS  Google Scholar 

  38. Li, J. K.; Wang, N.; Wu, X. S., A novel biodegradable system based on gelatin nanoparticles and poly(lactic-co-glycolic acid) microspheres for protein and peptide drug delivery. Journal of Pharmaceutical Sciences 1997, 86(8), 891–895

    Article  CAS  Google Scholar 

  39. Chen, S., Piper, R., Webster, D., Singh, J., Triblock copolymers: synthesis, characterization, and delivery of a model protein. International Journal of Pharmaceutics 2005, 288, 207–218

    Article  CAS  Google Scholar 

  40. Collinson, M. M., Recent trends in analytical applications of organically modified silicate materials. TrAC, Trends in Analytical Chemistry 2002, 21(1), 30–38

    Article  CAS  Google Scholar 

  41. Livage, J., Biological applications of sol–gel glasses. In Sol-Gel Technologies for Glass Producers and Users, Aegerter, M. A.; Mennig, M., Eds. Springer: New York, 2004; pp 399–402

    Google Scholar 

  42. MacCraith, B. D.; McDonagh, C., Optical chemical sensors. In Sol-Gel Technologies for Glass Producers and Users, Aegerter, M. A.; Mennig, M., Eds. Springer: New York, 2004; pp 313–320

    Google Scholar 

  43. Rickus, J. L.; Dunn, B.; Zink, J. I., Optically based sol–gel biosensor materials. Opt. Biosens. 2002, 427–456

    Google Scholar 

  44. Pandey, S.; Baker, G. A.; Kane, M. A.; Bonzagni, N. J.; Bright, F. V., On the microenvironments surrounding dansyl sequestered within class I and II xerogels. Chemistry of Materials 2000, 12, (12), 3547–3551

    Article  CAS  Google Scholar 

  45. Narang, U.; Jordan, J. D.; Bright, F. V.; Prasad, P. N., Probing the cybotactic region of PRODAN in tetramethylorthosilicate-derived sol–gels. Journal of Physical Chemistry 1994, 98(33), 8101–8107

    Article  CAS  Google Scholar 

  46. Narang, U.; Wang, R.; Prasad, P. N.; Bright, F. V., Effects of aging on the dynamics of rhodamine 6G in tetramethyl orthosilicate-derived sol–gels. Journal of Physical Chemistry 1994, 98(1), 17–22

    Article  CAS  Google Scholar 

  47. Jordan, J. D.; Dunbar, R. A.; Bright, F. V., Aerosol-generated sol–gel-derived thin films as biosensing platforms. Analytica Chimica Acta 1996, 332(1), 83–91

    Article  CAS  Google Scholar 

  48. Jordan, J. D.; Dunbar, R. A.; Hook, D. J.; Zhuang, H.; Gardella, J. A., Jr.; Colon, L. A.; Bright, F. V., Production, characterization and utilization of aerosol-deposited sol–gel-derived films. Chemistry of Materials 1998, 10(4), 1041–1051

    Article  CAS  Google Scholar 

  49. Bonzagni, N. J.; Baker, G. A.; Pandey, S.; Niemeyer, E. D.; Bright, F. V., On the origin of the heterogeneous emission from pyrene sequestered within tetramethylorthosilicate-based xerogels: a decay-associated spectra and O2 quenching study. Journal of Sol-Gel Science and Technology 2000, 17(1), 83–90

    Article  CAS  Google Scholar 

  50. Bukowski, R. M.; Ciriminna, R.; Pagliaro, M.; Bright, F. V., High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)3]2+. Analytical Chemistry 2005, 77(8), 2670–2672

    Article  CAS  Google Scholar 

  51. Bukowski, R. M.; Davenport, M. D.; Titus, A. H.; Bright, F. V., O2-responsive chemical sensors based on hybrid xerogels that contain fluorinated precursors. Applied spectroscopy 2006, 60(9), 951–957

    Article  CAS  Google Scholar 

  52. Tao, Z.; Tehan, E. C.; Tang, Y.; Bright, F. V., Stable sensors with tunable sensitivities based on class II xerogels. Analytical Chemistry 2006, 78(6), 1939–1945

    Article  CAS  Google Scholar 

  53. Shughart, E. L.; Ahsan, K.; Detty, M. R.; Bright, F. V., Site selectively templated and tagged xerogels for chemical sensors. Analytical Chemistry 2006, 78(9), 3165–3170

    Article  CAS  Google Scholar 

  54. Lochmuller, C. H.; Wenzel, T. J., Spectroscopic studies of pyrene at silica interfaces. Journal of Physical Chemistry 1990, 94(10), 4230–4235

    Article  CAS  Google Scholar 

  55. Chambers, R.; Haruvy, Y.; Fox, M. A., Excited-state dynamics in the structural characterization of solid alkyltrimethoxysilane-derived Sol-Gel films and glasses containing bound or unbound chromophores. Chemistry of Materials 1994, 6(8), 1351–1357

    Article  CAS  Google Scholar 

  56. Brennan, J. D.; Hartman, J. S.; Ilnicki, E. I.; Rakic, M., Fluorescence and NMR characterization and biomolecule entrapment studies of sol–gel-derived organic-inorganic composite materials formed by sonication of precursors. Chemistry of Materials 1999, 11(7), 1853–1864

    Article  CAS  Google Scholar 

  57. Goring, G. L. G.; Brennan, J. D., Fluorescence and physical characterization of sol–gel-derived nanocomposite films suitable for the entrapment of biomolecules. Journal of Materials Chemistry 2002, 12(12), 3400–3406

    Article  CAS  Google Scholar 

  58. Nishida, F.; McKiernan, J. M.; Dunn, B.; Zink, J. I.; Brinker, C. J.; Hurd, A. J., In situ fluorescence probing of the chemical changes during sol–gel thin film formation. Journal of the American Ceramic Society 1995, 78(6), 1640–1648

    Article  CAS  Google Scholar 

  59. Brennan, J. D., Using intrinsic fluorescence to investigate proteins entrapped in sol–gel derived materials. Applied Spectroscopy 1999, 53(3), 106A–121A

    Article  CAS  Google Scholar 

  60. Flora, K. K.; Dabrowski, M. A.; Musson, S. P.; Brennan, J. D., The effect of preparation and aging conditions on the internal environment of sol–gel derived materials as probed by 7-azaindole and pyranine fluorescence. Canadian Journal of Chemistry 1999, 77(10), 1617–1625

    Article  CAS  Google Scholar 

  61. Huang, M. H.; Soyez, H. M.; Dunn, B. S.; Zink, J. I., In situ fluorescence probing of molecular mobility and chemical changes during formation of dip-coated Sol-gel silica thin films. Chemistry of Materials 2000, 12(1), 231–235

    Article  CAS  Google Scholar 

  62. Flora, K. K.; Brennan, J. D., Characterization of the microenvironments of PRODAN entrapped in tetraethyl orthosilicate derived glasses. Journal of Physical Chemistry B 2001, 105(48), 12003–12010

    Article  CAS  Google Scholar 

  63. Keeling-Tucker, T.; Brennan, J. D., Fluorescent probes as reporters on the local structure and dynamics in sol–gel-derived nanocomposite materials. Chemistry of Materials 2001, 13(10), 3331–3350

    Article  CAS  Google Scholar 

  64. Tleugabulova, D.; Czardybon, W.; Brennan, J. D., Time-resolved fluorescence anisotropy in assessing side-chain and segmental motions in polyamines entrapped in sol–gel derived silica. Journal of Physical Chemistry B 2004, 108(30), 10692–10699

    Article  CAS  Google Scholar 

  65. Sui, X.; Lin, T.-Y.; Tleugabulova, D.; Chen, Y.; Brook, M. A.; Brennan, J. D., Monitoring the distribution of covalently tethered sugar moieties in sol–gel-based silica monoliths with fluorescence anisotropy: Implications for entrapped enzyme activity. Chemistry of Materials 2006, 18(4), 887–896

    Article  CAS  Google Scholar 

  66. Baker, G. A.; Pandey, S.; Maziarz, E. P., III; Bright, F. V., Toward tailored xerogel composites: local dipolarity and nanosecond dynamics within binary composites derived from tetraethyl-orthosilane and ORMOSILs, oligomers or surfactants. Journal of Sol-Gel Science and Technology 1999, 15(1), 37–48

    Article  CAS  Google Scholar 

  67. Baker, G. A.; Wenner, B. R.; Watkins, A. N.; Bright, F. V., Effects of processing temperature on the oxygen quenching behavior of tris(4,7′-diphenyl-1,10′-phenanthroline) ruthenium (II) sequestered within sol–gel-derived xerogel films. Journal of Sol-Gel Science and Technology 2000, 17(1), 71–82

    Article  CAS  Google Scholar 

  68. Tang, Y.; Tao, Z.; Bright, F. V., Sol hydrolysis and condensation time affects the sensitivity of thin film xerogel-based sensing Materials. Journal of Sol-Gel Science and Technology 2007, 42(2), 127–133

    Article  CAS  Google Scholar 

  69. Cho, E. J.; Tao, Z.; Tang, Y.; Tehan, E. C.; Bright, F. V.; Hicks, W. L., Jr.; Gardella, J. A., Jr.; Hard, R., Tools to rapidly produce and screen biodegradable polymer and sol–gel-derived xerogel formulations. Applied Spectroscopy 2002, 56(11), 1385–1389

    Article  CAS  Google Scholar 

  70. Cho, E. J.; Tao, Z.; Tang, Y.; Tehan, E. C.; Bright, F. V.; Hicks, W. L., Jr.; Gardella, J. A., Jr.; Hard, R., Tailored delivery of active keratinocyte growth-factor from biodegradable polymer formulations. Journal of Biomedical Materials Research, Part A 2003, 66A, 417–424

    Article  CAS  Google Scholar 

  71. Cho, E. J.; Bright, F. V., Pin-printed chemical sensor arrays for simultaneous multianalyte quantification. Analytical Chemistry 2002, 74(6), 1462–1466

    Article  CAS  Google Scholar 

  72. Dong, D. C.; Winnik, M., Canadian Journal of Chemistry 1984, 62, 2560–2565

    Article  CAS  Google Scholar 

  73. Wong, A. L.; Hunnicutt, M. L.; Harris, J. M., Analytical Chemistry 1991, 63, 1076

    Article  CAS  Google Scholar 

  74. Weber, G.; Farris, F. J., Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 1979, 18(14), 3075–3078

    Article  CAS  Google Scholar 

  75. Drake, J. M., Photophysics and cis-trans isomerization of DCM. Chemical Physics Letters 1985, 113(6), 530–534

    Article  CAS  Google Scholar 

  76. Tang, Y.; Tao, Z.; Bukowski, R. M.; Tehan, E. C.; Karri, S.; Titus, A. H.; Bright, F. V., Tailored xerogel-based sensor arrays and artifical neural networks yield improved O2 detection accuracy and precision. Analyst 2006, 131, 1129–1136

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work from our laboratories was generously supported by the National Science Foundation, the National Institute of Health, the Gerald A. Sterbutzel fund at UB, and the John R. Oishei Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank V. Bright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Holthoff, W.G., Tan, L.T., Holthoff, E.L., Cardone, E.M., Bright, F.V. (2009). High Throughput Production and Screening Strategies for Creating Advanced Biomaterials and Chemical Sensors. In: Potyrailo, R.A., Mirsky, V.M. (eds) Combinatorial Methods for Chemical and Biological Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73713-3_16

Download citation

Publish with us

Policies and ethics