Skip to main content

Photonic Structures of Luminescent Semiconductor Nanocrystals and Spherical Microcavities

  • Chapter
  • First Online:
Hybrid Nanocomposites for Nanotechnology

Abstract

This chapter introduces three-dimensional photonic structures of luminescent semiconductor nanocrystals and spherical microcavities made by a layer-by-layer assembly as a versatile bottom-up nanofabrication technique. Fabrication aspects are discussed and fundamental optical properties are presented for these nanostructures where two main concepts of solid-state physics, the complete 3D electronic and photonic confinement are merged. Several applications of hybrid photonic structures as building blocks for coupled optical emitters and waveguides are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABN:

Anti-bonding

ASPL:

Anti-Stokes photoluminescence

BN:

Bonding

FSR:

Free spectral region

GLMT:

Generalized Lorentz-Mie theory

LbL:

Layer-by-layer

LO:

Longitudinal optical

MA:

Mercaptoethylamine

MF:

Melamine formaldehyde

MPD:

3-mercapto-1,2-propanediol

NCs:

Nanocrystals

PDDA:

Poly(diallyldimethylammonium chloride)

PE:

Polyelectrolyte

PL:

Photoluminescence

PM:

Photonic molecule

PS:

Polystyrene

PSS:

Poly(sodium 4-styrenesulfonate)

QY:

Quantum yield

SMTB:

Single-mode tight-binding

TE:

Transverse electric

TGA:

Thioglycolic acid

TM:

Transverse magnetic

TO:

Transverse optical

WGM:

Whispering gallery modes

References

  1. Rogach AL (2008) Semiconductor Nanocrystal Quantum Dots. Springer, Wien

    Google Scholar 

  2. Weller H (1993) Colloidal semiconductor q-particles – chemistry in the transition region between solid-state and molecules. Angew. Chem. Int. Ed. 32: 41

    Google Scholar 

  3. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100: 13226–13239.

    CAS  Google Scholar 

  4. Woggon U (1997) Optical Properties of Semiconductor Quantum Dots. Springer-Verlag, Berlin

    Google Scholar 

  5. Gaponenko SV (1998) Optical Properties of Semiconductor Nanocrystals. Cambridge University Press, Cambridge

    Google Scholar 

  6. Colvin V, Schlamp M, Alivisatos A (1994) Light-emitting diodes made with cadmium selenide nanocrystals. Nature 370: 6488–6491.

    Google Scholar 

  7. Lee J, Sundar VC, Heine JR, Bawendi MG, Jensen KF (2000) Full colour emission from II-VI semiconductor quantum dot – polymer composites. Adv. Mater. 12: 1102–1105.

    CAS  Google Scholar 

  8. Coe S, Woo WK, Bawendi M, and Bulovic V. (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420: 800–803.

    CAS  Google Scholar 

  9. Achermann M, Petruska MA, Koleske DD, Crawford MH, Klimov VI (2006) Nanocrystal-based light-emitting diodes utilizing high-efficiency non-radiative energy transfer for color conversion. Nano Lett. 6: 1396–1400.

    CAS  Google Scholar 

  10. Decher G, Schlenoff JB (2002) Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. Wiley, Weinheim

    Google Scholar 

  11. Sukhorukov GB, Donath E, Lichtenfeld H, Knippel E, Knippel M, Budde A, Möhwald H (1998) Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Coll. Surf. A 137: 253–266

    Google Scholar 

  12. Susha AS, Caruso F, Rogach AL, Sukhorukov GB, Kornowski A, Möhwald H, Giersig M, Eychmüller A, Weller H (2000) Formation of luminescent spherical core-shell particles by the consecutive adsorption of polyelectrolyte and CdTe(S) nanocrystals on latex colloids. Coll. Surf. A 163: 39–44.

    CAS  Google Scholar 

  13. Radtchenko IL, Sukhorukov GB, Gaponik N, Kornowski A, Rogach AL, Möhwald H (2001) Core-shell structures formed by the solvent-controlled precipitation of luminescent CdTe nanocrystals on latex spheres. Adv. Mater. 13:1684–1687.

    CAS  Google Scholar 

  14. Fan X, Palinginis P, Lacey S, Wang H (2000) Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors. Opt. Lett. 25: 1600–1602.

    CAS  Google Scholar 

  15. Artemyev MV, Woggon U, Wannemacher R, Jaschinski H, Langbein W (2001) Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission. Nano Lett. 1: 309–314.

    CAS  Google Scholar 

  16. Fan XD, Lonergan MC, Zhang YZ, Wang HL (2001) Enhanced spontaneous emission from semiconductor nanocrystals embedded in whispering gallery optical microcavities. Phys. Rev. B 64: 115310.

    Google Scholar 

  17. Rakovich YP, Donegan JF, Gaponik N, Rogach AL (2003) Raman scattering and Anti-Stokes emission from a single spherical microcavity with a CdTe quantum dot monolayer. Appl. Phys. Lett. 83: 2539–2541.

    CAS  Google Scholar 

  18. Rakovich YP, Yang L, McCabe EM, Donegan JF, Perova T, Moore A, Gaponik N, Rogach AL. (2003) Whispering gallery mode emission from a composite system of CdTe nanocrystals and a spherical microcavity. Sem. Sci. Techn. 18: 914–918.

    CAS  Google Scholar 

  19. Bawendi MG, Carroll PJ, Wilson W, Brus L (1992) Luminescence properties of CdSe quantum crystallites: resonance between interior and surface localized states. J. Chem. Phys. 96: 946–954.

    CAS  Google Scholar 

  20. Gao M, Kirstein S, Mohwald H, Rogach AL, Kornowski A, Eychmüller A, Weller H (1998) Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. Chem. B 102: 8360–8363.

    CAS  Google Scholar 

  21. Baranov AV, Rakovich YP, Donegan JF, Perova TS, Moore RA, Talapin DV, Rogach AL, Masumoto Y, Nabiev I (2003) Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots. Phys. Rev. B 68: 165306.

    Google Scholar 

  22. Kimura J, Uematsu T, Maenosono S, Yamaguchi Y (2004) Photo-induced fluorescence enhancement in CdSe/ZnS quantum dot sub-monolayers sandwiched between insulating layers: influence of dot proximity. J. Phys. Chem. B 108: 13258–13264.

    CAS  Google Scholar 

  23. Wuister SF, de Mello Donegá C, Meijerink A (2004) Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem. B 108: 17393–17397.

    CAS  Google Scholar 

  24. Poznyak SK, Osipovich NP, Shavel A, Talapin DV, Gao M, Eychmüller A, Gaponik N (2005) Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution . J. Phys. Chem. B. 109: 1094–1100.

    CAS  Google Scholar 

  25. Murray CB, Norris DJ, Bawendi MG (1993) synthesis and characterization of nearly monodisperse CdE (E = S,Se,Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115: 8706–8715.

    CAS  Google Scholar 

  26. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101: 9463–9475.

    CAS  Google Scholar 

  27. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J. Phys. Chem. B 106: 7177–7185.

    CAS  Google Scholar 

  28. Gaponik N, Talapin DV, Rogach AL, Eychmüller A, Weller H (2002) Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to non-polar organic solvents. Nano Lett. 2: 803–806

    CAS  Google Scholar 

  29. Yaroslavov AA, Sinani VA, Efimova AA, Yaroslavova EG, Rakhnyanskaya AA, Ermakov YA, Kotov NA (2005) What is the effective charge of TGA-stabilized CdTe nanocolloids? J. Am. Chem. Soc. 127: 7322–7323.

    CAS  Google Scholar 

  30. Sukhorukov GB, Fery A, Brumen M, Möhwald H (2004) Physical chemistry of encapsulation and release. Phys. Chem. Chem. Phys. 6: 4078–4089

    CAS  Google Scholar 

  31. Caruso F (2001) Nanoengineering of particle surfaces. Adv. Mat. 13: 11–22

    CAS  Google Scholar 

  32. Mamedov AA, Belov A, Giersig M, Mamedova NN, Kotov NA (2001) Nanorainbows: graded semiconductor films from quantum dots. J. Am. Chem. Soc. 123: 7738–7739

    CAS  Google Scholar 

  33. Komarala VK, Rakovich YP, Bradley AL, Byrne SJ, Gun’ko YK (2006) Emission properties of colloidal quantum dots on polyelectrolyte multilayers. Nanotechnology 17: 4117–4122

    CAS  Google Scholar 

  34. Franzl T, Koktysh DS, Klar TA, Rogach AL, Feldmann J (2004) Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers. Appl. Phys. Lett. 84: 2904–2906

    CAS  Google Scholar 

  35. Franzl T, Shavel A, Rogach AL, Gaponik N, Klar TA, Eychmüller A, Feldmann J (2005) High-rate unidirectional energy transfer in directly assembled CdTe nanocrystal bilayers. Small 1: 392–395

    CAS  Google Scholar 

  36. Wang X, Qu L, Zhang J, Peng X, Xiao M (2003) Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett. 3: 1103–1106

    CAS  Google Scholar 

  37. Tang Z, Wang Y, Kotov NA (2002) Semiconductor nanoparticles on solid substrates: film structure, intermolecular interactions, and polyelectrolyte effects. Langmuir 18: 7035–7040

    CAS  Google Scholar 

  38. Yang L, Taylor CM, Rakovich Y, McCabe EM (2003) The three-dimensional imaging of microspheres with confocal and conventional polarization microscopes. Appl. Opt. 42: 5693–5700.

    CAS  Google Scholar 

  39. Kiraz A, Reese C, Gayral B, Zhang L, Schoenfeld WV, Gerardot BD, Petroff PM, Hu EL, Imamoglu A (2003) Cavity-quantum electrodynamics with quantum dots. J. Opt. B 5: 129–137

    CAS  Google Scholar 

  40. LeThomas N, Woggon U, Schöps O, Artemyev MV, Kazes M, Banin U. (2006) Cavity QED with semiconductor nanocrystals. Nano Lett. 6: 557–561

    CAS  Google Scholar 

  41. Woggon U, Wannemacher R, Artemyev M, Möller B, Lethomas N, Anikeyev V, Schöps O (2003) Dot-in-a-dot: electronic and photonic confinement in all three dimensions. Appl. Phys. B 77: 469–484

    CAS  Google Scholar 

  42. Rakovich YP, Gerlach M, Bradley AL, Donegan JF, Connolly TM, Boland JJ, Przyjalgowski MA, Ryder A, Gaponik N, Rogach AL (2004) Confined optical modes in small photonic molecules with semiconductor nanocrystals. J. Appl. Phys. 96: 6761–6765

    CAS  Google Scholar 

  43. Lu S, Jiang D, Jia R, An L, Bian L, Liang X, Ma B, Sun B (2002) Lasing of CdSexS1-x quantum dots in a glass spherical microcavity. J. Phys.: Condens. Matter 14: 6395–6401

    CAS  Google Scholar 

  44. Malko AV, Mikhailovsky AA, Petruska MA, Hollingsworth JA, Htoon H, Bawendi MG, Klimov VI (2002) From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids. Appl. Phys. Lett. 81: 1303–1305

    CAS  Google Scholar 

  45. Shopova SI, Farca G, Rosenberger AT, Wickramanayake WMS, Kotov NA (2004) Microsphere whispering-gallery-mode laser using HgTe quantum dots. Appl. Phys. Lett. 85: 6101–6103

    CAS  Google Scholar 

  46. Chan Y, Steckel JS, Snee PT, Caruge JM, Hodgkiss JM, Nocera DG, Bawendi MG (2005) Blue semiconductor nanocrystal laser. Appl. Phys. Lett. 86: 073102

    Google Scholar 

  47. Snee PT, Chan Y, Nocera DG, Bawendi MG (2005) Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite. Adv. Mater. 17: 1131–1136

    Google Scholar 

  48. Klimov VI, Bawendi MG (2001) Ultrafast carrier dynamics, optical amplification, and lasing in nanocrystals quantum dots. MRS Bulletin 26 (12): 998–1004

    CAS  Google Scholar 

  49. Rakovich YP, Gerlach M, Donegan JF, Gaponik N, Rogach AL (2005) Three-dimensional photon confinement in a spherical microcavity with CdTe quantum dots: Raman spectroscopy. Physica E 26: 28–32

    CAS  Google Scholar 

  50. Zwiller V, Aichele T, Benson O (2004) Quantum optics with single quantum dot devices. New J. Phys. 6: 96

    Google Scholar 

  51. Hirschfeld T (1976) Quantum efficiency independence of the time integrated emission from a fluorescent molecule. Appl. Opt. 15: 3135–3139

    CAS  Google Scholar 

  52. Chang RK, Campillo AJ (1996) Optical processes in microcavities. World Scientific, Singapore

    Google Scholar 

  53. Jackson JD (1999) Classical Electrodynamics. Wiley, Hoboken

    Google Scholar 

  54. Lidorikis E, Sigalas MM, Economou EN, Soukoulis CM (1998) Tight-binding parametrization for photonic band gap materials. Phys. Rev. Lett., 81: 1405–1408

    CAS  Google Scholar 

  55. Eisberg P, Resnick R. (1985) Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles. Wiley, New York

    Google Scholar 

  56. Arnold S, Comunale J, Whitten WB, Ramsey JM, Fuller KA (1992) Room-temperature microparticle-based persistent hole-burning spectroscopy. J. Opt. Soc. Am. B 9: 819–824

    CAS  Google Scholar 

  57. Arnold S (2001) Microspheres, photonic atoms and the physics of nothing. Am. Sci. 89: 414–421

    Google Scholar 

  58. Chew H (1987) Transition rates of atoms near spherical surfaces. J. Chem. Phys. 87: 1355–1360

    CAS  Google Scholar 

  59. Chew H (1988) Radiation and lifetimes of atoms inside dielectric particles. Phys. Rev. A 38: 3410–3416

    CAS  Google Scholar 

  60. Artemyev MV, Woggon U (2000) Quantum dots in photonic dots. Appl. Phys. Lett. 76: 1353–1355

    CAS  Google Scholar 

  61. Van de Hulst HC (1957) Light Scattering by Small Particles. Wiley, New York

    Google Scholar 

  62. Born M, Wolf E (1991) title type="book">Principles of Optics. Pergamon Press, Oxford

    Google Scholar 

  63. Wang RT, van de Hulst HC (1991) Rainbows: Mie computations and the Airy approximation. Appl. Opt. 30: 106–117

    CAS  Google Scholar 

  64. Bohren CF, Huffman DR (1983) title type="book">Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  65. Chylek P (1990) Resonance structure of Mie scattering: distance between resonances. J. Opt. Soc. Am. A 7: 1609–1613

    CAS  Google Scholar 

  66. Kerker M (1969) title type="book">The scattering of light and other electromagnetic radiation. Academic Press, New York

    Google Scholar 

  67. Hunter BA, Box MA, Maier B (1988) Resonance structure in weakly absorbing spheres. J. Opt. Soc. Am. A 5: 1281–1286

    Google Scholar 

  68. Smirnov AY, Rashkeev SN, Zagoskin AM (2002) Polarization switching in optical microsphere resonator. Appl. Phys. Lett. 80: 3503–3505

    CAS  Google Scholar 

  69. Lock JA (1998) Excitation efficiency of a morphology-dependent resonance by a focused Gaussian beam. J. Opt. Soc. Am. A 15: 2986–2994

    Google Scholar 

  70. Chylek P (1976) Partial-wave resonances and the ripple structure in the Mie normalized extinction cross section. J. Opt. Soc. Am. 66: 285–287

    Google Scholar 

  71. Chylek P, Kiehl JT, Ko MKW (1978) Optical levitation and partial-wave resonances. Phys. Rev. A 18: 2229–2233

    CAS  Google Scholar 

  72. Barber PW, Chang RK (1998) Optical effects associated with small particles. World Scientific, Singapore

    Google Scholar 

  73. Teraoka I, Arnold S (2006) Theory of resonance shifts in TE and TM whispering gallery modes by non-radial perturbations for sensing applications. J. Opt. Soc. Am. B 23: 1381–1389

    CAS  Google Scholar 

  74. Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F (2003) Shift of whispering-gallery modes in microspheres by protein adsorption. Opt. Lett. 28: 272–274

    CAS  Google Scholar 

  75. Teraoka I, Arnold S, Vollmer F (2003) Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium. J. Opt. Soc. Am. B 20: 1937–1946

    CAS  Google Scholar 

  76. Tzeng HM, Long MB, Chang RK, Barber PW (1985) Laser-induced shape distortions of flowing droplets deduced from morphology-dependent resonances in fluorescence spectra. Opt. Lett. 10: 209–211

    CAS  Google Scholar 

  77. Ilchenko VS, Volikov PS, Velichansky VL, Treussart F, Lefevre-Seguin V, Raimond JM, Haroche S (1998) Strain-tunable high-Q optical microsphere resonator. Opt. Commun. 145: 86–90

    CAS  Google Scholar 

  78. Lai HM, Leung PT, Young K, Barber PW, Hill SC (1990) Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets. Phys. Rev. A 41: 5187–5198

    CAS  Google Scholar 

  79. Teraoka I, Arnold S (2006) Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer. J. Opt. Soc. Am. B 23: 1434–1441

    CAS  Google Scholar 

  80. Lulevich VV, Andrienko D, Vinogradova OI (2004) Elasticity of polyelectrolyte multilayer microcapsules. J. Chem. Phys. 120: 3822–3826

    CAS  Google Scholar 

  81. Ashkin A (2000) History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Quant. Electron. 6:841–856

    CAS  Google Scholar 

  82. Molloy JE, Padgett MJ (2002) Lights, action: optical tweezers. Contemp. Phys. 43: 241–258

    CAS  Google Scholar 

  83. Kobayashi H, Ishimaru I, Hyodo R, Yasokawa T, Ishizaki K, Kuriyama S, Masaki T, Nakai S, Takegawa K, Tanaka N (2006) A precise method for rotating single cells. Appl. Phys. Lett. 88: 131103

    Google Scholar 

  84. Gauthier RC, Tait R, Mende H, Paulowicz C (2001) Optical selection, manipulation, trapping and activation of a microgear structure for applications in micro-optical-electromechanical systems. Appl. Opt. 40: 930–937

    CAS  Google Scholar 

  85. Sulfridge M (2002) Optical actuation of a bistable MEMS. J. Microelectromech. Syst. 11: 574–583

    CAS  Google Scholar 

  86. Metzger CH, Karrai K (2004) Cavity cooling of a microlever. Nature 432: 1002–1005

    CAS  Google Scholar 

  87. Dragoman D, Dragoman M (1999) Optical actuation of micromechanical tunneling structures with applications in spectrum analysis and optical computing. Appl. Opt. 38: 6773– 6778

    CAS  Google Scholar 

  88. Ren KF, Grehan G, Gouesbet G (1996) Prediction of reverse radiation pressure by generalized Lorenz-Mie theory. Appl. Opt. 35: 2702–2710

    CAS  Google Scholar 

  89. Mie G (1908) Beitrage zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 25: 377–445

    CAS  Google Scholar 

  90. Lebedeva OV, Kim BS, Vasilev K, Vinogradova OI (2005) Salt softening of polyelectrolyte multilayer microcapsules. J. Coll. Interf. Sci.284: 455–462

    CAS  Google Scholar 

  91. Hill SC, Benner RE (1986) Morphology-dependent resonances associated with stimulated processes in microspheres. J. Opt. Soc. Am. B 3: 1509–1514

    CAS  Google Scholar 

  92. Braginsky VB, Gorodetsky ML, Ilchenko VS (1998) Quality factor and non-linear properties of optical whispering-gallery modes. Phys. Lett. A 137: 393–397

    Google Scholar 

  93. Campillo AJ, Eversole JD, Lin HB (1991) Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets. Phys. Rev. Lett. 67: 437–440

    CAS  Google Scholar 

  94. Gorodetsky ML, Ilchenko VS (1992) Thermal nonlinear effects in optical whispering-gallery microresonators. Laser Phys. 2: 1004–1009

    Google Scholar 

  95. Collot L, Lefevre-Seguin V, Brune M, Raimond JM, Haroche S (1993) Very high-Q whispering-gallery mode resonances observed on fused silica microspheres. Europhys. Lett. 23: 327–334

    CAS  Google Scholar 

  96. Hill SC, Leach DH, Chang RK (1993) Third-order sum-frequency generation in droplets: model with numerical results for third-harmonic generation. J. Opt. Soc. Am. B 10: 16–33

    Google Scholar 

  97. Hill SC, Boutou V, Yu J, Ramstein S, Wolf JP, Pan YL, Holler S, Chang RK (2000) Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities. Phys. Rev. Lett. 85: p. 54–57

    Google Scholar 

  98. Spillane SM, Kippenberg TJ, Vahala KJ (2002) Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415: 621–623

    CAS  Google Scholar 

  99. Gaponik N, Rakovich YP, Gerlach M, Donegan JF, Savateeva D, Rogach AL (2006) Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects. Nanoscale Res. Lett., 1: 68–73

    Google Scholar 

  100. Gorska M, Nazarewicz W (1974) Application of the random-element isodisplacement model to long-wavelength optical phonons in CdSex Te1-x mixed crystals. Phys. Stat. Sol. (b) 65: 193–202

    CAS  Google Scholar 

  101. Trallero-Giner C, Debernardi A, Cardona M, Menéndez-Proupín E, Ekimov AI (1998) Optical vibrons in CdSe dots and dispersion relation of the bulk material. Phys. Rev. B 57: 4664–46

    CAS  Google Scholar 

  102. Byrne SJ, Corr SA, Rakovich TY, Gun’ko YK, Rakovich YP, Donegan JF, Mitchell S, Volkov Y (2006) Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging. J. Mater. Chem. 16: 2896–2902

    CAS  Google Scholar 

  103. Zhang JY, Wang XY, Xiao M, Qu L, Peng X (2002) Lattice contraction in free-standing CdSe nanocrystals. Appl. Phys. Lett. 81: 2076–2078

    CAS  Google Scholar 

  104. Serpengüzel A, Arnold S, Griffel G, Lock JA (1997) Enhanced coupling to microsphere resonances with optical fibers. J. Opt. Soc. Am. B 14: 790–795

    Google Scholar 

  105. Filonovich SA, Rakovich YP, Vasilevskiy MI, Artemyev MV, Talapin DV, Rogach AL, Rolo AG, Gomes MJM (2000) Probing the exciton density of states in semiconductor nanocrystals using integrated photoluminescence spectroscopy. Chem. Monthly 133: 909–918

    Google Scholar 

  106. Hoheisel W, Colvin VL, Johnson CS, Alivisatos AP (1994) Threshold for quasicontinuum absorption and reduced luminescence efficiency in CdSe nanocrystals. J. Chem. Phys. 101: 8455–8460

    CAS  Google Scholar 

  107. Rodrigues PAM, Tamulaitis G, Yu PY, Risbud SH (1995) Size selective photoluminescence excitation spectroscopy in CdSe nanocrystals. Sol. Stat. Commun. 94: 583–587

    CAS  Google Scholar 

  108. Rakovich Y, Walsh L, Bradley L, Donegan JF, Talapin D (2003) Size selective photoluminescence excitation spectroscopy in CdTe quantum dots. Proc. SPIE 4876: 432–437

    Google Scholar 

  109. Micic OI, Cheong HM, Fu H, Zunger A, Sprague JR, Mascarenhas A, Nozik A (1997) Size-Dependent spectroscopy of InP quantum dots. J. Phys. Chem. B. 101: 4904–4912

    CAS  Google Scholar 

  110. Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H (2001) A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J. Phys. Chem. B 105: 2260–2263

    CAS  Google Scholar 

  111. Rakovich YP, Filonovich SA, Gomes MJM, Donegan JF, Talapin DV, Rogach AL, Eychmüller A (2002) Anti-Stokes photoluminescence in II-VI colloidal nanocrystals. Phys. Stat. Sol. (b) 229: 449–452

    CAS  Google Scholar 

  112. Chen W (2005) Up-conversion luminescence from CdSe nanoparticles. J. Chem. Phys. 122: 224708

    Google Scholar 

  113. Joly AG, Chen W, McCready DE, Malm JO, Bovin JO (2005) Up-conversion luminescence of CdTe nanoparticles. Phys. Rev. B 71: 165304

    Google Scholar 

  114. Downing E, Hesselink L, Ralston J, MacFarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273: 1185–1189

    CAS  Google Scholar 

  115. Parthenopoulos DA, Rentzepis PM (1989) Three-dimensional optical storage memory. Science 245: 843–845

    CAS  Google Scholar 

  116. Hehlen MP, Güdel HU, Shu Q, Rand SC (1996) Cooperative optical bistability in the dimer system Cs3Y2Br9:10% Yb3 +. J. Chem. Phys. 104: 1232–1244

    CAS  Google Scholar 

  117. Said AA, Wamsley C, Hagan DJ, Van Stryland EW, Reinhardt BA, Roderer P, Dillard AG (1994) Third- and fifth-order optical non-linearities in organic materials. Chem. Phys. Lett. 228: 646–650

    CAS  Google Scholar 

  118. Cahalan MD, Parker I, Wei SH, Miller MJ (2002) Two-photon tissue imaging: seeing the immune system in a fresh light. Nat. Rev. Immunol. 2: 872–880

    CAS  Google Scholar 

  119. Pettit DL, Wang SSH, Gee KR, Augustine GJ (1997) Chemical two-photon uncaging: a novel approach to mapping glutamate receptors. Neuron 19: 465–471

    CAS  Google Scholar 

  120. Auzel F (2004) Up-conversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104: 139–174

    CAS  Google Scholar 

  121. Rakovich YP, Gladyshchuk AA, Rusakov KI, Filonovich SA, Gomes MJM, Talapin DV, Rogach AL, Eychmüller A (2002) Anti-stokes luminescence of cadmium telluride nanocrystals. J. Appl. Spectr. 69: 444–449

    CAS  Google Scholar 

  122. Filonovich SA, Gomes MJM, Rakovich YP, Donegan JF, Talapin DV, Gaponik NP, Rogach AL, Eychmüller A (2003) Up-conversion luminescence in colloidal CdTe nanocrystals. MRS Proc. 737: 157–162

    CAS  Google Scholar 

  123. Rakovich YP, Donegan JF, Filonovich SA, Gomes MJM, Talapin DV, Rogach AL, Eychmüller AA (2003) Up-conversion luminescence via a below-gap state in CdSe/ZnS quantum dots. Physica E 17: 99–100

    CAS  Google Scholar 

  124. Rusakov KI, Gladyshchuk AA, Rakovich YP, Donegan JF, Filonovich SA, Gomes MJM, Talapin DV, Rogach AL, Eychmüller A (2003) Control of efficiency of photon energy up-conversion in CdSe/ZnS quantum dots. Opt. Spectr. 94: 921–925

    Google Scholar 

  125. Wang X, Yu WW, Zhang J, Aldana J, Peng X, Xiao M (2003) Photoluminescence up-conversion in colloidal CdTe quantum dots. Phys. Rev. B 68: 125318

    Google Scholar 

  126. Chylek P, Zhan J (1989) Interference structure of the Mie extinction cross section. J. Opt. Soc. Am. A 6: 1846–1851

    CAS  Google Scholar 

  127. Bayer M, Gutbrod T, Reithmaier JP, Forchel A, Reinecke TL, Knipp PA, Dremin AA, Kulakovskii VD (1998) Optical modes in photonic molecules. Phys. Rev. Lett. 81: 2582–2585

    CAS  Google Scholar 

  128. Fuller KA (1991) Optical resonances and two-sphere systems. Appl. Opt. 30: 4716–4731

    CAS  Google Scholar 

  129. Mukaiyama T, Takeda K, Miyazaki H, Jimba Y, Kuwata-Gonokami M (1999) Tight-binding photonic molecule modes of resonant bispheres. Phys. Rev. Lett. 82: 4623–4626

    CAS  Google Scholar 

  130. Miyazaki H, Jimba Y (2000) Ab initio tight-binding description of morphology-dependent resonance in a bisphere. Phys. Rev. B 62: 7976–7997

    CAS  Google Scholar 

  131. Arnold S, Ghaemi A, Hendrie P, Fuller KA (1994) Morphological resonances detected from a cluster of two microspheres. Opt. Lett. 19: 156–158

    CAS  Google Scholar 

  132. Hara Y, Mukaiyama T, Takeda K, Kuwata-Gonokami M (2003) Photonic molecule lasing. Opt. Lett. 28: 2437–2439

    CAS  Google Scholar 

  133. Möller BM, Woggon U, Artemyev MV, Wannemacher R (2004) Photonic molecules doped with semiconductor nanocrystals. Phys. Rev. B 70: 115323

    Google Scholar 

  134. Barnes MD, Mahurin SM, Mehta A, Sumpter BG, Noid DW (2002) Three-dimensional photonic “molecules” from sequentially attached polymer-blend microparticles. Phys. Rev. Lett. 88: 015508

    CAS  Google Scholar 

  135. Rakovich YP, Donegan JF, Gerlach M, Bradley AL, Connolly TM, Boland JJ, Gaponik N, Rogach AL (2004) Fine structure of coupled optical modes in photonic molecules. Phys. Rev. A 70: 051801

    Google Scholar 

  136. Yariv A, Xu Y, Lee RK, Scherer A (1999) Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24: 711–713

    CAS  Google Scholar 

  137. Mookherjea S, Yariv A (2002) Coupled resonator optical waveguides. IEEE J. Selec. Top. Quant. Electron. 8: 448–456

    CAS  Google Scholar 

  138. Little BE, Chu ST (2000) Toward very large-scale integrated photonics. Opt. Photon. News 11: 24–29

    Google Scholar 

  139. Maleki L, Matsko AB, Savchenkov AA, Ilchenko VS (2004) Tunable delay line with interacting whispering-gallery-mode resonators. Opt. Lett. 29: 626–628

    CAS  Google Scholar 

  140. Poon JKS, Scheuer J, Xu Y, Yariv A (2004) Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B 21: 1665–1673

    CAS  Google Scholar 

  141. Rakovich YP, Boland JJ, Donegan JF (2005) Tunable photon lifetime in photonic molecules: a concept for delaying an optical signal. Opt. Lett. 30: 2775–2777

    CAS  Google Scholar 

  142. Astratov VN, Franchak JP, Ashili SP (2004) Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder. Appl. Phys. Lett. 85: 5508–5510

    CAS  Google Scholar 

  143. Möller B, Woggon U, Artemyev MV (2006) Photons in coupled microsphere resonators. J. Opt. A 8: S113-S121

    Google Scholar 

  144. Furukawa H, Tenjimbayashi K (2002) Light propagation in periodic microcavities. Appl. Phys. Lett. 80: 192–194

    CAS  Google Scholar 

  145. Srinivasarao M, Collings D, Philips A, Patel S (2001) Three-dimensionally ordered array of air bubbles in a polymer film. Science 292: 79–83

    CAS  Google Scholar 

  146. Harrison MT, Kershaw SV, Burt MG, Rogach AL, Kornowski A, Eychmüller A, Weller H (2000) Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dots. Pure Appl. Chem. 72: 295–307

    CAS  Google Scholar 

  147. Kershaw SV, Harrison M, Rogach AL, Kornowski A (2000) Development of IR-emitting colloidal II-VI quantum-dot materials. IEEE J. Selec. Top. Quant. Electron. 6: 534–543

    CAS  Google Scholar 

  148. Gumaste A, Antony T (2002) DWDM Network Designs and Engineering Solutions. Cisco Press. Indianapolis

    Google Scholar 

Download references

Acknowledgements

We thank Prof. J.J. Boland, Prof. A. Eychmüller, Dr. L. Bradley and Dr. N. Gaponik for helpful discussions and help with experimental arrangements. This work was supported by Science Foundation Ireland (SFI) under its CRANN CSET Project PR04 “Photonic Molecules.” ALR acknowledges the Walton Award from the SFI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury P. Rakovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rakovich, Y.P., Donegan, J.F., Rogach, A.L. (2009). Photonic Structures of Luminescent Semiconductor Nanocrystals and Spherical Microcavities. In: Merhari, L. (eds) Hybrid Nanocomposites for Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30428-1_14

Download citation

Publish with us

Policies and ethics