Skip to main content

Host-Microbe Communication within the GI Tract

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((volume 635))

Abstract

The gastrointestinal tract is a biologically diverse and complicated system which carries out essential physiological functions that support human health, while at the same time maintaining itself as an isolated environment to prevent infection and systemic disease. To maintain homeostasis in the gut, communication between the host and residing microbial communities must occur to identify and eliminate potential pathogens which could colonize and cause damage through aggressive pro-inflammatory responses by the mucosal immune system. To prevent such events, a number of host and bacterial-mediated mechanisms are utilized to monitor the environment and initiate appropriate immune responses to invading pathogens. An essential component of this communication process between gastrointestinal microflora and the host involves distinguishing indigenous species from pathogens through ligand-receptor interactions which lead to various signaling events in host cells. Such events generally result in the development of mucosal immunity and immunological tolerance. While these signaling pathways provide a highly effective means of communication between the gut microflora and the host, pathogens have developed mechanisms to manipulate these pathways to evade detection by the immune system to persist and cause disease. These adaptations include cell surface modifications and the expression of various virulence factors in response to different immunological and hormonal components produced by the host.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaper JB, Sperandio V. Bacterial Cell-to-Cell Signaling in the Gastrointestinal Tract. Infect Immun 2005; 73: 3197–3209.

    Article  PubMed  CAS  Google Scholar 

  2. Tlaskalova-Hogenova H, Stepankova R et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 2004; 93:97–108.

    Article  PubMed  CAS  Google Scholar 

  3. Chandran P, Satthaporn S, Robins A et al. Inflammatory bowel disease: dysfunction of GALT and gut bacterial flora (II). Surgeon 2003; 1:125–136.

    Article  PubMed  CAS  Google Scholar 

  4. Shanahan F. The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol 2002; 16:915–931.

    Article  PubMed  Google Scholar 

  5. Abreu MT, Fukata M, Arditi M. TLR signaling in the gut in health and disease. J Immunol 2005; 174:4453–4460.

    PubMed  CAS  Google Scholar 

  6. Haller D, Jobin C. Interaction between resident luminal bacteria and the host: can a healthy relationship turn sour? J Pediatr Gastroenterol Nutr 2004; 38:123–136.

    Article  PubMed  Google Scholar 

  7. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F et al. Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell 2004; 118:229–241.

    Article  PubMed  CAS  Google Scholar 

  8. Neish AS, Gewirtz AT, Zeng H et al. Prokaryotic Regulation of Epithelial Responses by Inhibition of Ikappa B-alpha Ubiquitination. Science 2000; 289:1560–1563.

    Article  PubMed  CAS  Google Scholar 

  9. Kelly D, Conway S. Bacterial modulation of mucosal innate immunity. Mol Immunol 2005; 42:895–901.

    Article  PubMed  CAS  Google Scholar 

  10. Kelly D, Conway S et al. Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 2005; 26:326–333.

    Article  PubMed  CAS  Google Scholar 

  11. Mazmanian SK, Liu CH, Tzianabos AO et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005; 122:107–118.

    Article  PubMed  CAS  Google Scholar 

  12. Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 2004; 127:224–238.

    Article  PubMed  CAS  Google Scholar 

  13. Svensson M, Johansson-Lindbom B, Wurbel MA et al. Selective Generation of Gut-Tropic T-cells in Gut-Associated Lymphoid Tissues: Requirement for GALT Dendritic Cells and Adjuvant. Ann NY Acad Sci 2004; 1029:405–407.

    Article  PubMed  CAS  Google Scholar 

  14. Papadakis KA, Prehn J, Moreno ST et al. CCR9-Positive lymphocytes and thymus-expressed chemokine distinguish small bowel from colonic Crohn’s disease. Gastroenterology 2001; 121:246–254.

    Article  PubMed  CAS  Google Scholar 

  15. Picarella D, Hurlbut P, Rottman J et al. Monoclonal antibodies specific for beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T-cells. J Immunol 1997; 158:2099–2106.

    PubMed  CAS  Google Scholar 

  16. Macpherson AJ, Uhr T. Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria. Science 2004; 303:1662–1665.

    Article  PubMed  CAS  Google Scholar 

  17. Rachmilewitz D, Katakura K, Karmeli F et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 2004; 126:520–528.

    Article  PubMed  CAS  Google Scholar 

  18. Bashir ME, Louie S, Shi HN et al. Toll-Like Receptor 4 Signaling by Intestinal Microbes Influences Susceptibility to Food Allergy. J Immunol 2004; 172:6978–6987.

    PubMed  CAS  Google Scholar 

  19. Thoma-Uszynski S, Stenger S, Takeuchi O et al. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 2001; 291:1544–1547.

    Article  PubMed  CAS  Google Scholar 

  20. Netea MG, Van der Meer JW, Kullberg BJ. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol 2004; 12:484–488.

    Article  PubMed  CAS  Google Scholar 

  21. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+ CD25+ T-cell-mediated suppression by dendritic cells. Science 2003; 299:1033–1036.

    Article  PubMed  CAS  Google Scholar 

  22. Inohara N, Chamaillard M, McDonald C et al. NOD-LRR Proteins: Role in Host-Microbial Interactions and Inflammatory Disease. Annu Rev Biochem 2005; 74:355–383.

    Article  PubMed  CAS  Google Scholar 

  23. Ulevitch RJ. Molecular mechanisms of innate immunity. Immunol Res 2000; 21:49–54.

    Article  PubMed  CAS  Google Scholar 

  24. Gewirtz AT. Flag in the crossroads: flagellin modulates innate and adaptive immunity. Curr Opin Gastroenterol 2006; 22:8–12.

    Article  PubMed  CAS  Google Scholar 

  25. Watanabe T, Kitani A, Murray PJ et al. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 2004; 5:800–808.

    Article  PubMed  CAS  Google Scholar 

  26. Miller SI, Ernst RK, Bader MW. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 2005; 3:36–46.

    Article  PubMed  CAS  Google Scholar 

  27. Hancock RE, McPhee JB. Salmonella’s sensor for host defense molecules. Cell 2005; 122:320–322.

    Article  PubMed  CAS  Google Scholar 

  28. Bader MW, Sanowar S, Daley ME et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005; 122:461–472.

    Article  PubMed  CAS  Google Scholar 

  29. Laughlin RS, Musch MW, Hollbrook CJ et al. The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann Surg 2000; 232:133–142.

    Article  PubMed  CAS  Google Scholar 

  30. Wu L, Estrada O, Zaborina O et al. Recognition of host immune activation by Pseudomonas aeruginosa. Science 2005; 309:774–777.

    Article  PubMed  CAS  Google Scholar 

  31. Sperandio V, Mellies JL, Nguyen W et al. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci USA 1999; 96:15196–15201.

    Article  PubMed  CAS  Google Scholar 

  32. Sperandio V, Torres AG, Girón JA et al. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2001; 183:5187–5197.

    Article  PubMed  CAS  Google Scholar 

  33. Sperandio V, Torres AG, Jarvis B et al. Bacteria-host communication: the language of hormones. Proc Natl Acad Sci USA 2003; 100:8951–8956.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Allen, C.A., Torres, A.G. (2008). Host-Microbe Communication within the GI Tract. In: Huffnagle, G.B., Noverr, M.C. (eds) GI Microbiota and Regulation of the Immune System. Advances in Experimental Medicine and Biology, vol 635. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09550-9_8

Download citation

Publish with us

Policies and ethics