Skip to main content

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 2))

Abstract

This introductory chapter discusses the problem of drug resistance and persistent medical biofilm infections, emphasizing the need for alternative approaches to the prevention and treatment of biofilm infections. Such alternative approaches are described in subsequent chapters, culminating with clinical studies that describe treating otherwise untreatable wound infections with the aid of antibiofilm approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adewoye L, Sutherland A, Srikumar R, Poole K (2002) The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J Bacteriol 184:4308–4312

    Article  PubMed  CAS  Google Scholar 

  2. Aendekerk S, Ghysels B, Cornelis P, Baysse C (2002) Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148:2371–2381

    PubMed  CAS  Google Scholar 

  3. Allison DG, Gilbert P (1995) Modification by surface association of antimicrobial susceptibility of bacterial populations. J Ind Microbiol 15:311–317

    Article  PubMed  CAS  Google Scholar 

  4. Anwar H, Dasgupta MK, Costerton JW (1990) Testing the susceptibility of bacteria in biofilms to antibacterial Agents. Antimicrob Agents Chemother 34:2043–2046

    PubMed  CAS  Google Scholar 

  5. Anwar H, van Biesen T, Dasgupta M, Lam K, Costerton JW (1989) Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Antimicrob Agents Chemother 33:1824–1826

    PubMed  CAS  Google Scholar 

  6. Appelbaum PC (2006) MRSA—the tip of the iceberg. Clin Microbiol Infect 12(Suppl 2):3–10

    Article  PubMed  CAS  Google Scholar 

  7. Arciola CR, Campoccia D, Gamberini S, Donati ME, Pirini V, Visai L, Speziale P, Montanaro L (2005) Antibiotic resistance in exopolysaccharide-forming Staphylococcus epidermidis clinical isolates from orthopaedic implant infections. Biomaterials 26:6530–6535

    Article  PubMed  CAS  Google Scholar 

  8. Bagge N, Ciofu O, Hentzer M, Campbell JI, Givskov M, Hoiby N (2002) Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob Agents Chemother 46:3406–3411

    Article  PubMed  CAS  Google Scholar 

  9. Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, Blevins JS, Smeltzer MS (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186:4665–4684

    Article  PubMed  CAS  Google Scholar 

  10. Campanac C, Pineau L, Payard A, Baziard-Mouysset G, Roques C (2002) Interactions between biocide cationic agents and bacterial biofilms. Antimicrob Agents Chemother 46:1469–1474

    Article  PubMed  CAS  Google Scholar 

  11. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  12. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  PubMed  CAS  Google Scholar 

  13. Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  PubMed  CAS  Google Scholar 

  14. Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219

    Article  PubMed  CAS  Google Scholar 

  15. Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743

    Article  PubMed  CAS  Google Scholar 

  16. Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  PubMed  CAS  Google Scholar 

  17. Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  PubMed  CAS  Google Scholar 

  18. Eaton KA, Gilbert JV, Joyce EA, Wanken AE, Thevenot T, Baker P, Plaut A, Wright A (2002) In vivo complementation of ureB restores the ability of Helicobacter pylori to colonize. Infect Immun 70:771–778

    Article  PubMed  CAS  Google Scholar 

  19. Elvers KT, Lappin-Scott HM (2000) Biofilms and biofouling, 2nd edn. Academic Press, San Diego

    Google Scholar 

  20. Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236

    CAS  Google Scholar 

  21. Gatermann S, Marre R (1989) Cloning and expression of Staphylococcus saprophyticus urease gene sequences in Staphylococcus carnosus and contribution of the enzyme to virulence. Infect Immun 57:2998–3002

    PubMed  CAS  Google Scholar 

  22. Ghuysen JM (1994) Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol 2:372–380

    Article  PubMed  CAS  Google Scholar 

  23. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  PubMed  CAS  Google Scholar 

  24. Hanaki H, Labischinski H, Inaba Y, Kondo N, Murakami H, Hiramatsu K (1998a) Increase in glutamine-non-amidated muropeptides in the peptidoglycan of vancomycin-resistant Staphylococcus aureus strain Mu50. J Antimicrob Chemother 42:315–320

    Article  PubMed  CAS  Google Scholar 

  25. Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H, Hiramatsu K (1998b) Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother 42:199–209

    Article  PubMed  CAS  Google Scholar 

  26. Hancock RE (1998) Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis 27(Suppl 1):S93–S99

    Article  PubMed  CAS  Google Scholar 

  27. Hartman BJ, Tomasz A (1984) Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158:513–516

    PubMed  CAS  Google Scholar 

  28. Hauser AR, Sriram P (2005) Severe Pseudomonas aeruginosa infections. Tackling the conundrum of drug resistance. Postgrad Med 117:41–48

    Article  PubMed  Google Scholar 

  29. Hedelin H, Brorson JE, Grenabo L, Pettersson S (1984) Ureaplasma urealyticum and upper urinary tract stones. Br J Urol 56:244–249

    Article  PubMed  CAS  Google Scholar 

  30. Hentzer M, Eberl L, Givskov M (2005) Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2:37–61

    Article  Google Scholar 

  31. Hooper DC (2002) Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect Dis 2:530–538

    Article  PubMed  CAS  Google Scholar 

  32. Hoyle BD, Costerton JW (1991) Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91–105

    PubMed  CAS  Google Scholar 

  33. Jones BD, Lockatell CV, Johnson DE, Warren JW, Mobley HL (1990) Construction of urease-negative mutant of Proteus mirabilis: analysis of virulence in a mouse model of ascending urinary tract infection. Infect Immun 58:1120–1123

    PubMed  CAS  Google Scholar 

  34. Kohler T, Epp SF, Curty LK, Pechere JC (1999) Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181:6300–6305

    PubMed  CAS  Google Scholar 

  35. Kohler T, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechere JC (1997) Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345–354

    Article  PubMed  CAS  Google Scholar 

  36. Korem M, Gov Y, Kiran MD, Balaban N (2005) Transcriptional profiling of target of RNAIII-activating protein, a master regulator of staphylococcal virulence. Infect Immun 73:6220–6228

    Article  PubMed  CAS  Google Scholar 

  37. LeChevallier MW, Cawthon CD, Lee RG (1988) Inactivation of biofilm bacteria. Appl Environ Microbiol 54:2492–2499

    PubMed  CAS  Google Scholar 

  38. Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O (2000) Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 182:3142–3150

    Article  PubMed  CAS  Google Scholar 

  39. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    Article  PubMed  CAS  Google Scholar 

  40. Li YH, Chen YY, Burne RA (2000) Regulation of urease gene expression by Streptococcus salivarius growing in biofilms. Environ Microbiol 2:169–177

    Article  PubMed  CAS  Google Scholar 

  41. Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2001b) Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908

    Article  PubMed  CAS  Google Scholar 

  42. Ligon JV, Kenny GE (1991) Virulence of ureaplasmal urease for mice. Infect Immun 59:1170–1171

    PubMed  CAS  Google Scholar 

  43. Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 111:1265–1273

    PubMed  CAS  Google Scholar 

  44. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O'Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  PubMed  CAS  Google Scholar 

  45. Matz C, Bergfeld T, Rice SA, Kjelleberg S (2004) Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6:218–226

    Article  PubMed  Google Scholar 

  46. Ng EY, Trucksis M, Hooper DC (1996) Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob Agents Chemother 40:1881–1888

    PubMed  CAS  Google Scholar 

  47. O'Toole GA, Gibbs KA, Hager PW, Phibbs PV Jr, Kolter R (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182:425–431

    Article  PubMed  Google Scholar 

  48. Poole K, Srikumar R (2001) Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. Curr Top Med Chem 1:59–71

    Article  PubMed  CAS  Google Scholar 

  49. Potera C (1999) Forging a link between biofilms and disease. Science 19:1837–1838

    Article  Google Scholar 

  50. Prigent-Combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002

    PubMed  CAS  Google Scholar 

  51. Pumbwe L, Piddock LJ (2000) Two efflux systems expressed simultaneously in multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:2861–2864

    Article  PubMed  CAS  Google Scholar 

  52. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  PubMed  CAS  Google Scholar 

  53. Song MD, Wachi M, Doi M, Ishino F, Matsuhashi M (1987) Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett 221:167–171

    Article  PubMed  CAS  Google Scholar 

  54. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  PubMed  CAS  Google Scholar 

  55. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964

    Article  PubMed  CAS  Google Scholar 

  56. Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  PubMed  CAS  Google Scholar 

  57. Utsui Y, Yokota T (1985) Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother 28:397–403

    PubMed  CAS  Google Scholar 

  58. Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864

    Article  PubMed  CAS  Google Scholar 

  59. Xu KD, McFeters GA, Stewart PS (2000) Biofilm resistance to antimicrobial agents. Microbiology 146:547–549

    PubMed  CAS  Google Scholar 

  60. Yoneyama H, Ocaktan A, Tsuda M, Nakae T (1997) The role of mex-gene products in antibiotic extrusion in Pseudomonas aeruginosa. Biochem Biophys Res Commun 233:611–618

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Balaban .

Editor information

Naomi Balaban

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balaban, N., Ren, D., Givskov, M., Rasmussen, T. (2008). Introduction. In: Balaban, N. (eds) Control of Biofilm Infections by Signal Manipulation. Springer Series on Biofilms, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7142_2007_006

Download citation

Publish with us

Policies and ethics