Skip to main content

An optimal, stable continued fraction algorithm for arbitrary dimension

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1084))

Abstract

We analyse a continued fraction algorithm (abbreviated CFA) for arbitrary dimension n showing that it produces simultaneous diophantine approximations which are up to the factor 2(n+2)/4 best possible. Given a real vector x =(x 1,..., x n−1, 1) εℝn this CFA generates a sequence of vectors (p 1 (k))..., p n−1 (k), q k) εℤn, k = 1, 2,... with increasing integers ¦q (k)¦ satisfying for i = 1,..., n − 1

$$\left| {x_i - p_i ^{(k)} /q^{(k)} } \right| \leqslant 2^{(n + 2)/4} \sqrt {1 + x_i^2 } /\left| {q^{(k)} } \right|^{1 + \tfrac{1}{{n - 1}}} .$$

By a theorem of Dirichlet this bound is best possible in that the exponent \(1 + \tfrac{1}{{n - 1}}\)can in general not be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bergman: Notes on Ferguson and Forcade's Generalized Euclidean Algorithm. TR, Department of Mathematics, University of California, Berkeley, CA, 1980.

    Google Scholar 

  2. L. Bernstein: The Jacobi-Perron Algorithm, Lecture Notes in Mathematics 207, Berlin-Heidelberg-New York (1971), pp. 1–161.

    Google Scholar 

  3. D. Bailey, P. Borwein, S. Plouffe: On the Rapid Computation of Various Polylogarithmic Constants, Technical Report, Simon Frazer University, Burnaby, B. C., Canada (1996).

    Google Scholar 

  4. G.L. Dirichlet: Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen, Bericht über die zur Bekanntmachung geigneten Verhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1842), pp. 93–95.

    Google Scholar 

  5. H.R.P. Ferguson and D.H. Bailey: A Polynomial Time, Numerically Stable Integer Relation Algorithm. RNR Technical Report RNR-91-032, NASA Ames Research Center, Moffett Field, CA (1992).

    Google Scholar 

  6. H. Ferguson and R. Forcade: Generalization of the Euclidean Algorithm for Real Numbers to all Dimensions Higher than Two, Bull. Amer. Math. Soc., (New Series) 1 (1979), pp. 912–914.

    Google Scholar 

  7. W.M. Gentleman: Error Analysis of QR Decomposition by Givens Transformations. Linear Algebra and its Applications, Vol. 10, pp. 189–197, 1975.

    Article  Google Scholar 

  8. G.H. Golub and C.F. van Loan: Matrix Computations. The Johns Hopkins University Press, London (1989).

    Google Scholar 

  9. C. Heckler: Automatische Parallelisierung und parallele Gitterbasenreduktion. Ph.D. Thesis, University of Saarbrücken, 1995.

    Google Scholar 

  10. C. Heckler and L. Thiele: A Parallel Lattice Basis Reduction for Meshconnected Processor Arrays and Parallel Complexity. Proceedings of the 5th Symposium on Parallel and Distributed Processing, Dallas (1993).

    Google Scholar 

  11. J. Hastad, B. Just, J.C. Lagarias and C.P. Schnorr: Polynomial Time Algorithms for Finding Integer Relations among Real Numbers. SIAM J. Comput., Vol. 18, No. 5 (1989), pp. 859–881.

    Article  Google Scholar 

  12. C.G.J. Jacobi: Allgemeine Theorie der Kettenbruchähnlichen Algorithmen, J. Reine Angew. Math. 69 (1868), pp. 29–64.

    Google Scholar 

  13. A. Joux: A Fast Parallel Lattice Basis Reduction Algorithm. Proceedings of the 2nd Gauss Symposium, Munich (1993).

    Google Scholar 

  14. B. Just: Generalizing the Continued Fraction Algorithm to Arbitrary Dimensions. SIAM J. Comput., Vol. 21, No. 5 (1992), pp. 909–926.

    Article  Google Scholar 

  15. A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovász: Factoring Polynomials with Rational Coefficients. Math. Ann. 21 (1982), pp. 515–534.

    Article  Google Scholar 

  16. O. Perron: Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64 (1907), pp. 1–76.

    Article  Google Scholar 

  17. C. Rössner and C.P. Schnorr: Computation of Highly Regular Nearby Points. Proceedings of the 3rd Israel Symposium on Theory of Computing and Systems, Tel Aviv (1995).

    Google Scholar 

  18. C.P. Schnorr: Block Reduced Lattice and Successive Minima. Combinatorics, Probablity and Computing 3 (1994), pp. 507–522.

    Google Scholar 

  19. G. Szekeres: Multidimensional Continued Fractions. Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 13 (1970), pp. 113–140.

    Google Scholar 

  20. J.H. Wilkinson: The Algebraic Eigenvalue Problem. Oxford University Press (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William H. Cunningham S. Thomas McCormick Maurice Queyranne

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rössner, C., Schnorr, C.P. (1996). An optimal, stable continued fraction algorithm for arbitrary dimension. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds) Integer Programming and Combinatorial Optimization. IPCO 1996. Lecture Notes in Computer Science, vol 1084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61310-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-61310-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61310-7

  • Online ISBN: 978-3-540-68453-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics