Skip to main content

Caterpillar (Gutman) trees in chemical graph theory

  • Conference paper
  • First Online:
Advances in the Theory of Benzenoid Hydrocarbons

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 153))

Abstract

Gutman trees (also known as caterpillar trees and benzenoid trees) are demonstrated to be elegant storage devices of information on graph-theoretical properties of many mathematical objects including benzenoid graphs, rook boards, king polyomino graphs, Clar graphs, and Young diagrams. The notion of a “restricted” equivalence relation is considered to relate these graphs. The uses of caterpillars in various areas of physico-chemical interests such as modeling of interactions, computational chemistry and ordering of graphs are discussed. Namely, caterpillar trees are used to model wreath product groups, Clar structures and nonadjacency relations in graphs of chemical interest. Further, they are used to study several properties of benzenoid hydrocarbons including UV absorption spectrum, molecular susceptibility, anisotropy, heat of atomization as well as Diels-Alder addition rate constant. Several novel relations correlating the connectivity of a caterpillar tree with several combinatorial properties of benzenoid hydrocarbons, such as, Kekulé counts, conjugated circuits, Sachs graphs, and self-avoiding paths, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References and Notes

  1. Harary F, Schwenk AJ (1973) Discrete Math. 6: 359

    Google Scholar 

  2. Harary F, Schwenk AJ (1973) Discrete Math. 6: 361

    Google Scholar 

  3. Gutman I (1977) Theoret. Chim. Acta 45: 309

    Google Scholar 

  4. El-Basil S (1986) J. Chem. Soc., Faraday Trans. II 82: 299

    Google Scholar 

  5. El-Basil S (1984) Theoret. Chim. Acta 65: 199

    Google Scholar 

  6. El-Basil S (1984) Theoret. Chim. Acta 65: 191

    Google Scholar 

  7. A benzenoid hydrocarbon in which no hexagon is adjacent to more than two hexagons is called unbranched (or nonbranched). cf. Ref. [3]

    Google Scholar 

  8. El-Basil S (1987) J. Math. Chem. 1: 153

    Google Scholar 

  9. Harary F (1969) Graph theory, Addison-Wesley, Reading, p 164

    Google Scholar 

  10. Balasubramanian K (1982) Studies in physical and theoretical chemistry 23: 149

    Google Scholar 

  11. El-Basil S: Unpublished Results

    Google Scholar 

  12. Clar E (1972) The aromatic sextet, Wiley, London

    Google Scholar 

  13. Gutman I (1982) Bull. Soc. Chim. Beograd 47: 465

    Google Scholar 

  14. Harary F, Palmer EM (1973) Graphical Enumeration, Academic, New York, p 16

    Google Scholar 

  15. El-Basil S (1988) Discrete Appl. Math. 19: 145

    Google Scholar 

  16. El-Basil S (1988) Bull. Chem. Soc. Japan, 61: 533

    Google Scholar 

  17. Eq. (7) holds for any tree of the form Tn(a, b, c, d, ...) where a, b, c, d, ..., ≧ 1. Further a, b, c, d, ... do not have to be equal

    Google Scholar 

  18. Cohen DIA (1978) Basic Techniques of Combinatorial Theory, Wiley, New York, p 63

    Google Scholar 

  19. Trinajstić N (1983) Chemical graph theory, CRC Press, Boca Raton, FL vol I, p 24

    Google Scholar 

  20. El-Basil S (1987) J. Comput. Chem. 8: 956

    Google Scholar 

  21. Motoyama A, Hosoya H (1985) J. Math. Phys. 18: 1485

    Google Scholar 

  22. Gutman I, Polansky OE (1986) Mathematical concepts in organic chemistry, Springer Berlin Heidelberg New York

    Google Scholar 

  23. Trinajstić N (1983) Chemical graph theory, CRC Press, Boca Raton FL vols I, II

    Google Scholar 

  24. Balaban AT (1976) Chemical applications of graph theory, Academic, London

    Google Scholar 

  25. Hosoya H (1971) Bull. Chem. Soc. Japan 44: 2332

    Google Scholar 

  26. Hosoya H, Yamaguchi T: Tetrahedron Lett. 1975: 4659

    Google Scholar 

  27. Gutman I (1982) Z. Naturforsch. 37a: 69; Gutman I, El-Basil S (1984) Z. Naturforsch. 39a: 276

    Google Scholar 

  28. Godsil CG, Gutman I (1981) Croat. Chem. Acta. 54: 53

    Google Scholar 

  29. Randić M (1988) Private communication

    Google Scholar 

  30. Harary F (1969) Graph theory, Addison-Wesley, Reading, chapt. 8

    Google Scholar 

  31. Isoarithmicity is discussed in: Cyvin SJ, Gutman I (1988) Kekulé Structures in Benzenoid Hydrocarbons, Springer, Berlin Heidelberg New York, p 29; (Lecture Notes in Chemistry 46) also: Balaban AT, Tomescu I (1983) Match 14: 155; Croat. Chem. Acta. 57: 391 The name isoconjugate is used sometimes to describe hydrocarbons which are isoarithmic and contain identical numbers of conjugated circuits: Randić M (1977) Tetrahedron 33: 1905

    Google Scholar 

  32. Randić M (1975) J. Am. Chem. Soc. 97: 6609

    Google Scholar 

  33. Clar E (1972) The aromatic sextet, Wiley, London; Rouvray DH, El-Basil S (1988) J. Mol. Struct. (Theochem) 165: 9

    Google Scholar 

  34. Cyvin SJ, Gutman I (1988) Kekulé Structures in Benzenoid Hydrocarbons, Springer, Berlin Heidelberg New York, pp 16–17 (Lecture Notes in Chemistry 46)

    Google Scholar 

  35. El-Basil S: Unpublished results (available on request)

    Google Scholar 

  36. Clar E (1964) Polycyclic hydrocarbons, Academic, London, vol 1, p 114

    Google Scholar 

  37. Dewar MJS, Hashmall JA, Trinajstić N (1970) J. Am. Chem. Soc. 92: 5555

    Google Scholar 

  38. Balaban AT (1982) Pure and Appl. Chem. 54: 1077

    Google Scholar 

  39. Živković TP, Trinajstić N (1987) Chem. Phys. Lett. 136: 141; Klein DJ, Schmalz TG, El-Basil S, Randić M, Trinajstić N (in press) J. Mol. Struct. (Theochem.)

    Google Scholar 

  40. El-Basil S (Unpublished results)

    Google Scholar 

  41. Hosoya H, Ohkami N (1983) J. Comput. Chem. 4: 585

    Google Scholar 

  42. Randić M (1977) J. Am. Chem. Soc. 99: 444

    Google Scholar 

  43. Randić M, Brissey GM, Spencer RB, Wilkins CL (1979) Computers and Chemistry 3: 5

    Google Scholar 

  44. Gutman I, Randić M (1977) Chem. Phys. Lett. 47: 15

    Google Scholar 

  45. Muirhead RF (1901) Proc. Edinburgh Math. Soc. 19: 36; (1903) 21: 144; (1906) 24: 45; also: Randić M (1978) Chem. Phys. Lett. 55: 547

    Google Scholar 

  46. Ruch E, Schönhofer A (1970) Theoret. Chim. Acta. 19: 225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ivan Gutman Sven J. Cyvin

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

El-Basil, S. (1990). Caterpillar (Gutman) trees in chemical graph theory. In: Gutman, I., Cyvin, S.J. (eds) Advances in the Theory of Benzenoid Hydrocarbons. Topics in Current Chemistry, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51505-4_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-51505-4_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51505-0

  • Online ISBN: 978-3-540-48185-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics