Skip to main content

Fuzzy models in geotechnical engineering and construction management

  • Chapter
Analyzing Uncertainty in Civil Engineering

Summary

This article is devoted to a variety of applications of fuzzy models in civil engineering, presenting current work of a group of researchers at the University of Innsbruck. With fuzzy methods and possibility theory as an encompassing framework, the following areas are addressed: uncertainties in geotechnical engineering, fuzzy finite element computation of a foundation raft, fuzzy dynamical systems, processing uncertainty in project scheduling and cost planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bandemer and W. Näther. Fuzzy Data Analysis. Kluwer, Dordrecht, 1992.

    Google Scholar 

  2. R. Booker, P. Balaam, and H. Davis. The behaviour of an elastic, non-homogeneous half-space. Part I — Line load and point loads. Int. J. num. analytical Meth. Geomechanics, 9:353–367, 1985.

    Google Scholar 

  3. D. Dubois and H. Prade. Possibility Theory. Plenum Press, New York, 1988.

    Google Scholar 

  4. Th. Fetz. Finite element method with fuzzy parameters. In I. Troch and F. Breitenecker, editors, Proceedings IMACS Symposium on Mathematical Modelling, Vienna 1997, volume 11 of ARGESIM Report, pages 81–86, 1997.

    Google Scholar 

  5. Th. Fetz, M. Hofmeister, G. Hunger, J. Jäger, H. Lessmann, M. Oberguggenberger, A. Rieser, and R. Stark. Tunnelberechnung — Fuzzy? Bauingenieur, 72:33–40, 1997.

    Google Scholar 

  6. M. Klisinski. Plasticity theory based on fuzzy sets. Journal of Engineering Mechanics, 114(4):563–583, 1988.

    Google Scholar 

  7. D. Köll. Netzplanberechnung mit unscharfen Zahlen. Diplomarbeit, Universit ät Innsbruck, 1997.

    Google Scholar 

  8. G. Krenn. Kosten und Bauzeit. Eine Untersuchung über Zusammenhänge mit Fuzzy-Methoden. Diplomarbeit, Universität Innsbruck, 1996.

    Google Scholar 

  9. H. Lessmann, J. Mühlögger, and M. Oberguggenberger. Netzplantechnik mit unscharfen Methoden. Bauingenieur, 69:469–478, 1994.

    Google Scholar 

  10. K. Neumann. Operations Research Verfahren, volume 3. Carl Hanser Verlag, Mvnchen, 1975.

    Google Scholar 

  11. M. Oberguggenberger. Fuzzy differential equations. In I. Troch and F. Breitenecker, editors, Proceedings IMACS Symposium on Mathematical Modelling, Vienna 1997, volume 11 of ARGESIM Report, pages 75–80, 1997.

    Google Scholar 

  12. S. Pittschmann. Lösungsmethoden für Funktionen und gewöhnliche Differentialgleichungen mit unscharfen Parametern. Diplomarbeit, Universit ät Innsbruck, 1996.

    Google Scholar 

  13. S. Plankensteiner. Unsicherheiten im Projektablauf, Fallbeispiel: Grenztunnel Füssen-Vils. D iplomarbeit, Universität Innsbruck, 1991.

    Google Scholar 

  14. H.A. Simon. The Science of the Artificial. MIT Press, Cambridge, 1981.

    Google Scholar 

  15. R.F. Stark and R. Booker. Surface displacements of a non-homogeneous elastic half-space subjected to uniform surface tractions. Part I — Loading on arbitrarily shaped areas. Int. J. num. analytical Meth. Geomechanics, 21(6):361–378, 1997.

    Google Scholar 

  16. R.F. Stark and R. Booker. Surface displacements of a non-homogeneous elastic half-space subjected to uniform surface tractions. Part II — Loading on rectangular shaped areas. Int. J. num. analytical Meth. Geomechanics, 21(6):379–395, 1997.

    Google Scholar 

  17. P.-A. Von Wolffersdorf. Feldversuch an einer Spundwand im Sandboden: Versuchsergebnisse und Prognosen. Geotechnik, 17:73–83, 1994.

    Google Scholar 

  18. L. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fetz, T. et al. (2005). Fuzzy models in geotechnical engineering and construction management. In: Fellin, W., Lessmann, H., Oberguggenberger, M., Vieider, R. (eds) Analyzing Uncertainty in Civil Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26847-2_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-26847-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22246-0

  • Online ISBN: 978-3-540-26847-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics