Skip to main content

Nanographenes and Graphene Nanoribbons with Zigzag-Edged Structures

  • Chapter
  • First Online:
From Polyphenylenes to Nanographenes and Graphene Nanoribbons

Part of the book series: Advances in Polymer Science ((POLYMER,volume 278))

Abstract

Compared with armchair-edged nanographenes (NGs) and graphene nanoribbons (GNRs), graphene nanostructures with zigzag edge peripheries display unique electronic, magnetic, and photophysical properties resulting from the spin-polarized state at the zigzag edges. More interestingly, some possess prominent biradical/polyradical character in the ground state. Thanks to the development of chemistry in recent decades, such NGs and GNRs with unique zigzag peripheries are now synthetically accessible. This chapter discusses several strategies for the synthesis of zigzag-edged NGs and GNRs, their structural characterization, physical properties, and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197–200

    Article  CAS  Google Scholar 

  3. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) Nature 490:192–200

    Article  CAS  Google Scholar 

  4. Castro-Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  5. Gemayel ME, Narita A, Dössel LF, Sundaram RS, Kiersnowski A, Pisula W, Hansen MR, Ferrari AC, Orgiu E, Feng X, Müllen K, Samori P (2014) Nanoscale 6:6301–6314

    Article  Google Scholar 

  6. Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H (2008) Phys Rew Lett 100:206803

    Article  CAS  Google Scholar 

  7. Ritter KA, Lyding JW (2009) Nat Mater 8:235–242

    Article  CAS  Google Scholar 

  8. Han M, Özyilmaz B, Zhang Y, Kim P (2007) Phys Rev Lett 98:206805

    Article  CAS  Google Scholar 

  9. Yazyev O (2013) Acc Chem Res 46:2319–2328

    Article  CAS  Google Scholar 

  10. Datta SS, Strachan DR, Khamis SM, Johnson ATC (2008) Nano Lett 8:1912–1915

    Article  CAS  Google Scholar 

  11. Campos-Delgado J, Romo-Herrera J, Jia X, Cullen D, Muramatsu H, Kim Y, Hayashi T, Ren Z, Smith D, Okuno Y, Ohba T, Kanoh H, Kaneko K, Endo M, Terrones H, Dresselhaus M, Terrones M (2008) Nano Lett 8:2773–2778

    Article  CAS  Google Scholar 

  12. Chen ZH, Lin YM, Rooks MJ, Avouris P (2007) Phys E 40:228–232

    Article  CAS  Google Scholar 

  13. Elías A, Botello-Méndez A, Meneses-Rodríguez D, González V, Ramírez-González D, Ci L, Muñoz-Sandoval E, Ajayan M, Terrones H, Terrones M (2010) Nano Lett 10:366–372

    Article  CAS  Google Scholar 

  14. Jiao L, Wang X, Diankov G, Wang H, Dai H (2010) Nat Nano 5:321–325

    Article  CAS  Google Scholar 

  15. Pan Z, Liu N, Fu L, Liu Z (2011) J Am Chem Soc 133:17578–17581

    Article  CAS  Google Scholar 

  16. Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T (2014) Adv Mater 26:4134–4138

    Article  CAS  Google Scholar 

  17. Wu J, Gherghel L, Watson M, Li J, Wang Z, Simpson C, Kolb U, Müllen K (2003) Macromolecules 36:7082–7089

    Article  CAS  Google Scholar 

  18. Yang X, Dou X, Rouhanipour A, Zhi L, Räder H, Müllen K (2008) J Am Chem Soc 130:4216–4217

    Article  CAS  Google Scholar 

  19. Fogel Y, Zhi L, Rouhanipour A, Andrienko D, Räder H, Müllen K (2009) Macromolecule 42:6878–6884

    Article  CAS  Google Scholar 

  20. Schwab MG, Narita N, Hernandez Y, Balandina Y, Mali KS, Feyter SD, Feng X, Müllen K (2012) J Am Chem Soc 134:18169–18172

    Article  CAS  Google Scholar 

  21. Dössel L, Gherghel L, Feng X, Müllen K (2011) Angew Chem Int Ed 50:2540–2543

    Article  CAS  Google Scholar 

  22. Son YW, Cohen ML, Louie SG (2006) Nature 444:347–349

    Article  CAS  Google Scholar 

  23. Wu J, Pisula W, Müllen K (2007) Chem Rev 107:718–747

    Article  CAS  Google Scholar 

  24. Chen L, Hernandez Y, Feng X, Müllen K (2012) Angew Chem Int Ed 51:7640–7654

    Article  CAS  Google Scholar 

  25. Clar E (1972) The aromatic sextet. London, Wiley

    Google Scholar 

  26. Feng X, Pisula W, Müllen K (2009) Pure Appl Chem 81:2203–2224

    Article  CAS  Google Scholar 

  27. Stabel A, Herwig P, Müllen K, Rabe JP (1995) Angew Chem Int Ed 34:1609–1611

    Article  CAS  Google Scholar 

  28. Rieger R, Müllen K (2010) J Phys Org Chem 23:315–325

    CAS  Google Scholar 

  29. Pisula W, Feng X, Müllen K (2011) Chem Mater 23:554–567

    Article  CAS  Google Scholar 

  30. Liu J, Li BW, Tan YZ, Giannakopoulos A, Sanchez-Sanchez C, Ruffieux P, Beljonne D, Fasel R, Feng X, Müllen K (2015) J Am Chem Soc 137:6097–6103

    Article  CAS  Google Scholar 

  31. Reid DH (1958) Tetrahedron 3:339–352

    Article  CAS  Google Scholar 

  32. Morita Y, Suzuki S, Sato K, Takui T (2011) Nat Chem 3:197–204

    Article  CAS  Google Scholar 

  33. Purushothaman B, Bruzek M, Parkin SR, Miller AF, Anthony JE (2011) Angew Chem Int Ed 50:7013–7017

    Article  CAS  Google Scholar 

  34. Stein SE, Brown RL (1987) J Am Chem Soc 109:3721–3729

    Article  CAS  Google Scholar 

  35. Wang Z, Tomović Ź, Kastler M, Pretsch R, Negri F, Enkelmann V, Müllen K (2004) J Am Chem Soc 126:7794–7795

    Article  CAS  Google Scholar 

  36. Kastler M, Schmidt J, Pisula W, Sebastiani D, Müllen K (2006) J Am Chem Soc 128:9526–9534

    Article  CAS  Google Scholar 

  37. Lowe JP (1982) Int J Quantum Chem Quantum Biol Symp 9:5–13

    CAS  Google Scholar 

  38. Dumslaff T, Yang B, Maghsoumi A, Velpula G, Mali KS, Castiglioni C, Feyter SD, Tommasini M, Narita A, Feng X, Müllen K (2016) J Am Chem Soc 138:4726–4729

    Article  CAS  Google Scholar 

  39. Alibert-Fouet S, Seguy I, Bobo JF, Destruel P, Bock H (2007) Chem Eur J 13:1746–1753

    Article  CAS  Google Scholar 

  40. Rädulescu D, Ostrogovich G, Bärbulescu F (1931) Chem Ber 64:2240–2242

    Article  Google Scholar 

  41. Kono Y, Miyamoto H, Aso Y, Otsubo T, Ogura F, Tanaka T, Sawada M (1989) Angew Chem Int Ed 28:1222–1223

    Article  Google Scholar 

  42. Schoental R, Scott EJY (1949) J Chem Soc:1683–1696

    Google Scholar 

  43. Berlman IB (1973) Energy transfer parameters of aromatic compounds. Academic, London

    Google Scholar 

  44. Mi BX, Gao ZQ, Lee CS, Lee ST, Kwong HL, Wong NB (1999) Appl Phys Lett 75:4055–4057

    Article  CAS  Google Scholar 

  45. Clar E (1948) Chem Ber 81:62

    Google Scholar 

  46. Arabei SM, Pavich TA (2000) J Appl Spectrosc 67:236–244

    Article  CAS  Google Scholar 

  47. Hirao Y, Konishi A, Matsumoto K, Kurata H, Kubo T (2012) AIP Conf Proc 1504:863–866

    Article  CAS  Google Scholar 

  48. Li J, Zhang K, Zhang X, Huang KW, Chi C, Wu J (2010) J Org Chem 75:856–863

    Article  CAS  Google Scholar 

  49. Konishi A, Hirao Y, Nakano M, Shimizu A, Botek E, Champagne B, Shiomi D, Sato K, Takui T, Matsumoto K, Kurata H, Kubo T (2010) J Am Chem Soc 132:11021–11023

    Article  CAS  Google Scholar 

  50. Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T (2013) J Am Chem Soc 135:1430–1437

    Article  CAS  Google Scholar 

  51. Konishi A, Hirao Y, Kurata H, Kubo T, Nakano M, Kamada K (2014) Pure Appl. Chem 86:497–505

    CAS  Google Scholar 

  52. Konishi A, Hirao Y, Kurata H, Kubo T (2013) Solid State Commun 175-176:62–70

    Article  CAS  Google Scholar 

  53. Motta SD, Negri F, Fazzi D, Castiglioni C, Canesi EV (2010) J Phys Chem Lett 1:3334–3339

    Article  CAS  Google Scholar 

  54. Sun Z, Wu J (2012) J Mater Chem 22:4151–4160

    Article  CAS  Google Scholar 

  55. Sun Z, Ye Q, Chi C, Wu J (2012) Chem Soc Rev 41:7857–7889

    Article  CAS  Google Scholar 

  56. Fort EH, Donovan PM, Scott LT (2009) J Am Chem Soc 131:16006–16007

    Article  CAS  Google Scholar 

  57. Jiang DE, Dai S (2008) Chem Phys Lett 466:72–75

    Article  CAS  Google Scholar 

  58. Moscardó F, San-Fabián E (2009) Chem Phys Lett 480:26–30

    Article  CAS  Google Scholar 

  59. Liu J, Ravat P, Wagner M, Baumgarten M, Feng X, Müllen K (2015) Angew Chem Int Ed 54:12442–12446

    Article  CAS  Google Scholar 

  60. Chase DT, Fix AG, Rose BD, Weber CD, Nobusue S, Stockwell CE, Zakharov LN, Lonergan MC, Haley MM (2011) Angew Chem Int Ed 50:11103–11106

    Article  CAS  Google Scholar 

  61. Chase DT, Rose BD, McClintock SP, Zakharov LN, Haley MM (2011) Angew Chem Int Ed 50:1127–1130

    Article  CAS  Google Scholar 

  62. Liu J, Narita A, Osella S, Zhang W, Schollmeyer D, Beljonne D, Feng X, Müllen K (2016) J Am Chem Soc 138:2602–2608

    Article  CAS  Google Scholar 

  63. Gu X, Xu X, Li H, Liu Z, Miao Q (2015) J Am Chem Soc 137:16203–16208

    Article  CAS  Google Scholar 

  64. Liu J, Osella S, Ma J, Berger R, Schollmeyer D, Beljonne D, Feng X, Müllen K (2016) J Am Chem Soc 138:8364–8367

    Article  CAS  Google Scholar 

  65. Zhang X, Li J, Qu H, Chi C, Wu J (2010) Org Lett 12:3946–3949

    Article  CAS  Google Scholar 

  66. Zöphel L, Berger R, Gao P, Enkelmann V, Baumgarten M, Wagner M, Müllen K (2013) Chem Eur J 19:17821–17826

    Article  CAS  Google Scholar 

  67. Rogers C, Chen C, Pedramrazi Z, Omrani AA, Tsai HZ, Jung HS, Lin S, Crommie MF, Fischer FR (2015) Angew Chem Int Ed 54:15143–15146

    Article  CAS  Google Scholar 

  68. Reid DH (1956) Chem Ind:1504

    Google Scholar 

  69. Sogo PB, Nakazaki M, Calvin M (1957) J Chem Phys 26:1343–1345

    Article  CAS  Google Scholar 

  70. Reid DH, Fraser M, Molloy BB, Payne HAS, Sutherland RG (1961) Tetrahedron Lett 15:530–535

    Article  Google Scholar 

  71. Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang JY (1999) J Am Chem Soc 121:1619–1620

    Article  CAS  Google Scholar 

  72. Zaitsev V, Rosokha SV, Head-Gordon M, Kochi JK (2006) J Org Chem 71:520–526

    Article  CAS  Google Scholar 

  73. Nakasuji K, Yoshida K, Murata I (1983) J Am Chem Soc 105:5136–5137

    Article  CAS  Google Scholar 

  74. Murata I, Sasaki S, Klabunde KU, Toyoda J, Nakasuji K (1991) Angew Chem Int Ed 30:172–173

    Article  Google Scholar 

  75. Ohashi K, Kubo T, Masui T, Yamamoto K, Nakasuji K, Takui T, Kai Y, Murata I (1998) J Am Chem Soc 120:2018–2027

    Article  CAS  Google Scholar 

  76. Kubo T, Shimizu A, Sakamoto M, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2005) Angew Chem Int Ed 44:6564–6568

    Article  CAS  Google Scholar 

  77. Shimizu A, Uruichi M, Yakushi K, Matsuzaki H, Okamoto H, Nakano M, Hirao Y, Matsumoto K, Kurata H, Kubo T (2009) Angew Chem Int Ed 48:5482–5486

    Article  CAS  Google Scholar 

  78. Kubo T, Shimizu A, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2007) Org Lett 9:81–84

    Article  CAS  Google Scholar 

  79. Shimizu A, Hirao Y, Matsumoto K, Kurata H, Kubo T, Uruichi M, Yakushi K (2012) Chem Commun 48:5629–5631

    Article  CAS  Google Scholar 

  80. Shimizu A, Kubo T, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Hirao Y, Matsumoto K, Kurata H, Morita Y, Nakasuji K (2010) J Am Chem Soc 132:14421–14428

    Article  CAS  Google Scholar 

  81. Kubo T (2015) Chem Rec 15:218–232

    Article  CAS  Google Scholar 

  82. Kubo T (2015) Chem Lett 44:111–122

    Article  CAS  Google Scholar 

  83. Clar E, Lang KF, Schulz-Kiesow H (1955) Chem Ber 88:1520–1527

    Article  CAS  Google Scholar 

  84. Staab HA, Nissen A, Ipaktschi J (1968) Angew Chem Int Ed 7:226–226

    Article  CAS  Google Scholar 

  85. Mitchell RH, Sondheimer F (1970) Tetrahedron 26:2141–2150

    Article  CAS  Google Scholar 

  86. Staab HA, Ipaktschi J, Nissen A (1971) Chem Ber 104:1182–1186

    Article  CAS  Google Scholar 

  87. Umeda R, Hibi D, Miki K, Tobe Y (2009) Org Lett 11:4104–4106

    Article  CAS  Google Scholar 

  88. Umeda R, Hibi D, Miki K, Tobe Y (2010) Pure Appl Chem 82:871–878

    Article  CAS  Google Scholar 

  89. Wu TC, Chen CH, Hibi D, Shimizu A, Tobe Y, Wu YT (2010) Angew Chem Int Ed 49:7059–7062

    Article  CAS  Google Scholar 

  90. Shan L, Liang Z, Xu X, Tang Q, Miao Q (2013) Chem Sci 4:3294–3297

    Article  CAS  Google Scholar 

  91. Sun Z, Zeng Z, Wu J (2013) Chem Asian J 8:2894–2904

    Article  CAS  Google Scholar 

  92. Sun Z, Zeng Z, Wu J (2014) Acc Chem Res 47:2582–2591

    Article  CAS  Google Scholar 

  93. Li Y, Heng WK, Lee BS, Aratani N, Zafra JL, Bao N, Lee R, Sung YM, Sun Z, Huang KW, Webster RD, López Navarrete JT, Kim DH, Osuka A, Casado J, Ding J, Wu J (2012) J Am Chem Soc 134:14913–14922

    Article  CAS  Google Scholar 

  94. Nakano M, Kishi R, Takebe A, Nate M, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek E (2007) Comput Lett 3:333–338

    Article  CAS  Google Scholar 

  95. Weil T, Vosch T, Hofkens J, Peneva K, Müllen K (2010) Angew Chem Int Ed 49:9068–9093

    Article  CAS  Google Scholar 

  96. Anthony J (2008) Angew Chem Int Ed 47:452–483

    Article  CAS  Google Scholar 

  97. Zeng W, Sun Z, Herng TS, Gonçalves TP, Gopalakrishna TY, Huang KW, Ding J, Wu J (2016) Angew Chem Int Ed 55:8615–8619

    Article  CAS  Google Scholar 

  98. Stępień M, Gońka E, Żyła M (2016) N. Sprutta Chem Rev 117:3479–3716

    Article  CAS  Google Scholar 

  99. Liu Z, Marder TB (2008) Angew Chem Int Ed 47:242–244

    Article  CAS  Google Scholar 

  100. Bosdet MJD, Piers WE (2009) Can J Chem 87:8–29

    Article  Google Scholar 

  101. Campbell PG, Marwitz AJV, Liu SY (2012) Angew Chem Int Ed 51:6074–6092

    Article  CAS  Google Scholar 

  102. Wang XY, Wang JY, Pei J (2015) Chem Eur J 21:3528–3539

    Article  CAS  Google Scholar 

  103. Aramaki Y, Omiya H, Yamashita M, Nakabayashi K, Ohkoshi SI, Nozaki K (2012) J Am Chem Soc 134:19989–19992

    Article  CAS  Google Scholar 

  104. Suzuki S, Yoshida K, Kozaki M, Okada K (2013) Angew Chem Int Ed 52:2499–2502

    Article  CAS  Google Scholar 

  105. Rosenthal AJ, Devillard M, Miqueu K, Bouhadir G, Bourissou D (2015) Angew Chem Int Ed 54:9198–9202

    Article  CAS  Google Scholar 

  106. Katayama T, Nakatsuka S, Hirai H, Yasuda N, Kumar J, Kawai T, Hatakeyama T (2016) J Am Chem Soc 138:5210–5213

    Article  CAS  Google Scholar 

  107. Wang XY, Narita A, Zhang W, Feng X, Müllen K (2016) J Am Chem Soc 138:9021–9024

    Article  CAS  Google Scholar 

  108. Wang X, Zhang F, Schellhammer KS, Machata P, Ortmann F, Cuniberti G, Fu Y, Hunger J, Tang R, Popov AA, Berger R, Müllen K, Feng X (2016) J Am Chem Soc 138:11606–11615

    Article  CAS  Google Scholar 

  109. Ajayakumar M, Asthana D, Mukhopadhyay P (2012) Org Lett 14:4822–4825

    Article  CAS  Google Scholar 

  110. Wu X, Guo Z, Wu Y, Zhu S, James TD, Zhu W (2013) ACS Appl Mater Interfaces 5:12215–12220

    Article  CAS  Google Scholar 

  111. Jung JY, Kang M, Chun J, Lee J, Kim J, Kim J, Kim Y, Kim SJ, Lee C, Yoon J (2013) Chem Commun 49:176–178

    Article  CAS  Google Scholar 

  112. Ji L, Edkins RM, Lorbach A, Krummenacher I, Brückner C, Eichhorn A, Braunschweig H, Engels B, Low PJ, Marder TB (2015) J Am Chem Soc 137:6750–6753

    Article  CAS  Google Scholar 

  113. Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, Verzhbitskiy IA, Casiraghi C, Hansen MR, Koch AHR, Fytas G, Ivasenko O, Li B, Mali KS, Tatyana B, Mahesh S, Feyter SD, Müllen K (2014) Nat Chem 6:126–132

    Article  CAS  Google Scholar 

  114. Cai J, Pignedoli CA, Talirz L, Ruffieux P, Söde H, Liang L, Meunier V, Berger R, Li R, Feng X, Müllen K, Fasel R (2014) Nat Nano 9:896–900

    Article  CAS  Google Scholar 

  115. Narita A, Verzhbitskiy IA, Frederickx W, Mali KS, Jensen SN, Hansen MR, Bonn M, Feyter SD, Casiragh C, Feng X, Müllen K (2014) ACS Nano 8:11622–11630

    Article  CAS  Google Scholar 

  116. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen P, Saleh M, Feng X, Müllen K, Fasel R (2010) Nature 466:470–473

    Article  CAS  Google Scholar 

  117. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Phys Rev B 54:17954–17961

    Article  CAS  Google Scholar 

  118. Son YW, Cohen ML, Louie SG (2007) Phys Rev Lett 98:216803

    Article  CAS  Google Scholar 

  119. Talirz L, Sode H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R, Pignedoli CA (2013) J Am Chem Soc 135:2060–2063

    Article  CAS  Google Scholar 

  120. Ijas M, Ervasti M, Uppstu A, Liljeroth P, van der Lit J, Swart I, Harju A (2013) Phys Rev B 88:075429

    Article  CAS  Google Scholar 

  121. Magda GZ, Jin XZ, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang CY, Biro LP, Tapaszto L (2014) Nature 514:608–611

    Article  CAS  Google Scholar 

  122. Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R (2016) Nature 531:489–492

    Article  CAS  Google Scholar 

  123. Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) Science 325:1110–1114

    Article  CAS  Google Scholar 

  124. Li Y, Zhang W, Morgenstern M, Mazzarello R (2013) Phys Rev Lett 110:216804

    Article  CAS  Google Scholar 

  125. Repp J, Meyer G, Paavilainen S, Olsson FE, Persson M (2005) Phys Rev Lett 95:225503

    Article  CAS  Google Scholar 

  126. Hybertsen MS, Louie SG (1986) Phys Rev B 34:5390

    Article  CAS  Google Scholar 

  127. Tao C, Jiao L, Yazyev OV, Chen YC, Feng J, Zhang X, Capaz RB, Tour JM, Zettl A, Louie SG, Dai H, Crommie MF (2011) Nat Phys 7:616–620

    Article  CAS  Google Scholar 

  128. van der Lit J, Boneschanscher MP, Vanmaekelbergh D, Ijas M, Uppstu A, Ervasti M, Harju A, Liljeroth P, Swart I (2013) Nat Commun 4:2023

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by ERC grants on NANOGRAPH and 2DMATER, the EC under Graphene Flagship (No. CNECT-ICT-604391), Center for Advancing Electronics Dresden (CFAED), European Social Fund, and the Federal State of Saxony (ESF-Project “GRAPHD,” TU Dresden).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinliang Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Liu, J., Berger, R., Müllen, K., Feng, X. (2017). Nanographenes and Graphene Nanoribbons with Zigzag-Edged Structures. In: Müllen, K., Feng, X. (eds) From Polyphenylenes to Nanographenes and Graphene Nanoribbons. Advances in Polymer Science, vol 278. Springer, Cham. https://doi.org/10.1007/12_2017_1

Download citation

Publish with us

Policies and ethics