Skip to main content

Isoprenoid Drugs, Biofuels, and Chemicals—Artemisinin, Farnesene, and Beyond

  • Chapter
  • First Online:
Biotechnology of Isoprenoids

Abstract

Isoprenoids have been identified and used as natural pharmaceuticals, fragrances, solvents, and, more recently, advanced biofuels. Although isoprenoids are most commonly found in plants, researchers have successfully engineered both the eukaryotic and prokaryotic isoprenoid biosynthetic pathways to produce these valuable chemicals in microorganisms at high yields. The microbial synthesis of the precursor to artemisinin—an important antimalarial drug produced from the sweet wormwood Artemisia annua—serves as perhaps the most successful example of this approach. Through advances in synthetic biology and metabolic engineering, microbial-derived semisynthetic artemisinin may soon replace plant-derived artemisinin as the primary source of this valuable pharmaceutical. The richness and diversity of isoprenoid structures also make them ideal candidates for advanced biofuels that may act as “drop-in” replacements for gasoline, diesel, and jet fuel. Indeed, the sesquiterpenes farnesene and bisabolene, monoterpenes pinene and limonene, and hemiterpenes isopentenol and isopentanol have been evaluated as fuels or fuel precursors. As in the artemisinin project, these isoprenoids have been produced microbially through synthetic biology and metabolic engineering efforts. Here, we provide a brief review of the numerous isoprenoid compounds that have found use as pharmaceuticals, flavors, commodity chemicals, and, most importantly, advanced biofuels. In each case, we highlight the metabolic engineering strategies that were used to produce these compounds successfully in microbial hosts. In addition, we present a current outlook on microbial isoprenoid production, with an eye towards the many challenges that must be addressed to achieve higher yields and industrial-scale production.

Graphical Abstract

An erratum to this chapter can be found at http://dx.doi.org/10.1007/10_2015_310

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Breitmaier E (2006) Terpenes flavors, fragrances, pharmaca, pheromones. Wiley, New York

    Google Scholar 

  2. Connolly J, Hill R (1991) Dictionary of terpenoids. Chapman and Hall, London

    Google Scholar 

  3. Davies FK, Jinkerson RE, Posewitz MC (2014) Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth Res

    Google Scholar 

  4. Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuels 24:267–273

    CAS  Google Scholar 

  5. Mack JH, Rapp VH, Broeckelmann M, Lee TS, Dibble RW (2014) Investigation of biofuels from microorganism metabolism for use as anti-knock additives. Fuel 117:939–943

    Google Scholar 

  6. Peralta-Yahya P, Ouellet M, Chan R, Mukhopadhyay A, Keasling J, Lee T (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483

    Google Scholar 

  7. Renninger N, McPhee D (2008) Fuel compositions comprising farnesane and method of making and using same. US20080098645 A1

    Google Scholar 

  8. Renninger N, Ryder J, Fisher K (2011) Jet fuel compositions and methods of making and using same. US Patent 7,671,245. US 7942940 B2

    Google Scholar 

  9. Ryder JA (2012) Jet fuel compositions and methods of making and using same. US 8106247B2

    Google Scholar 

  10. Tracy NI, Chen DC, Crunkleton DW, Price GL (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88:2238–2240

    CAS  Google Scholar 

  11. Yang Y, Dec J, Dronniou N, Simmons B (2010) Characteristics of isopentanol as a fuel for HCCI engines. SAE Int J Fuels Lubr 3:725–741

    CAS  Google Scholar 

  12. Wagner A, Krab K (1995) The alternative respiration pathway in plants: role and regulation. Physiol Plant 95(2):318–325

    Google Scholar 

  13. Martin V, Pitera D, Withers S, Newman J, Keasling J (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    CAS  Google Scholar 

  14. McCaskill D, Croteau R (1997) Prospects for the bioengineering of isoprenoid biosynthesis. Adv Biochem Eng Biotechnol 55:107–146

    CAS  Google Scholar 

  15. Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74

    CAS  Google Scholar 

  16. Chandran SS, Kealey JT, Reeves CD (2011) Microbial production of isoprenoids. Process Biochem 46:1703–1710

    CAS  Google Scholar 

  17. Klein-Marcuschamer D, Ajikumar PK, Stephanopoulos G (2007) Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol 25:417–424

    CAS  Google Scholar 

  18. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    CAS  Google Scholar 

  19. Hsu E (2006) Reflections on the “discovery” of the antimalarial qinghao. Br J Clin Pharmacol 61:666–670

    Google Scholar 

  20. World Health Organisation (2010) Guidelines for the treatment of malaria. 2nd edn. World Health Organization, Geneva

    Google Scholar 

  21. White NJ (2008) Qinghaosu (artemisinin): the price of success. Science 320:330–334

    CAS  Google Scholar 

  22. Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627

    CAS  Google Scholar 

  23. Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD (2006) High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng 95:684–691

    CAS  Google Scholar 

  24. Kizer L, Pitera DJ, Pfleger BF, Keasling JD (2008) Application of functional genomics to pathway optimization for increased isoprenoid production. Appl Environ Microbiol 74:3229–3241

    CAS  Google Scholar 

  25. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    CAS  Google Scholar 

  26. Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11:13–19

    CAS  Google Scholar 

  27. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4:e4489

    Google Scholar 

  28. Chang MCY, Eachus RA, Trieu W, Ro D-K, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3:274–277

    CAS  Google Scholar 

  29. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 1–13

    Google Scholar 

  30. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109:E111–E118

    CAS  Google Scholar 

  31. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    CAS  Google Scholar 

  32. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032

    CAS  Google Scholar 

  33. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759

    CAS  Google Scholar 

  34. Redding-Johanson AM, Batth TS, Chan R, Krupa R, Szmidt HL, Adams PD, Keasling JD, Lee TS, Mukhopadhyay A, Petzold CJ (2011) Targeted proteomics for metabolic pathway optimization: application to terpene production. Metab Eng 13:194–203

    CAS  Google Scholar 

  35. Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD, Keasling JD (2013) Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol:1–10

    Google Scholar 

  36. Misawa N (2011) Pathway engineering for functional isoprenoids. Curr Opin Biotechnol 22:627–633

    CAS  Google Scholar 

  37. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    CAS  Google Scholar 

  38. Maldonado-Bonilla LD, Betancourt-Jiménez M, Lozoya-Gloria E (2008) Local and systemic gene expression of sesquiterpene phytoalexin biosynthetic enzymes in plant leaves. Eur J Plant Pathol 121:439–449

    CAS  Google Scholar 

  39. Crock J, Wildung M, Croteau R (1997) Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-beta-farnesene. Proc Natl Acad Sci USA 94:12833–12838

    CAS  Google Scholar 

  40. Ansari HR, Curtis AJ (1974) Sesquiterpenes in the perfumery industry. J Soc Cosmet Chem 25:203–231

    CAS  Google Scholar 

  41. Arctander S (1969) Perfume and flavor chemicals: aroma chemicals, perfume and flavor chemicals: aroma chemicals. Allured Publishing Corporation, Vienna

    Google Scholar 

  42. Wang C, Yoon SH, Shah AA, Chung YR, Kim JY, Choi ES, Keasling JD, Kim SW (2010) Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Biotechnol Bioeng 107:421–429

    CAS  Google Scholar 

  43. Wiseman D, Werner S, Crowell P (2007) Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p21Cip1 and p27Kip1 in human pancreatic adenocarcinoma cells. J Pharmacol Exp Ther 320:1163–1170

    CAS  Google Scholar 

  44. Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    CAS  Google Scholar 

  45. Wang C, Kim J, Choi E, Kim S (2011) Microbial production of farnesol (FOH): current states and beyond. Process Biochem 46:1221–1229

    CAS  Google Scholar 

  46. Fernandes ES, Passos GF, Medeiros R, da Cunha FM, Ferreira J, Campos MM, Pianowski LF, Calixto JB (2007) Anti-inflammatory effects of compounds alpha-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur J Pharmacol 569:228–236

    CAS  Google Scholar 

  47. Passos GF, Fernandes ES, da Cunha FM, Ferreira J, Pianowski LF, Campos MM, Calixto JB (2007) Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. J Ethnopharmacol 110:323–333

    CAS  Google Scholar 

  48. Dolan MC, Jordan RA, Schulze TL, Schulze CJ, Manning MC, Ruffolo D, Schmidt JP, Piesman J, Karchesy JJ (2009) Ability of two natural products, nootkatone and carvacrol, to suppress Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in a Lyme disease endemic area of New Jersey. J Econ Entomol 102:2316–2324

    CAS  Google Scholar 

  49. Furusawa M, Hashimoto T, Noma Y, Asakawa Y (2005) Highly efficient production of nootkatone, the grapefruit aroma from valencene, by biotransformation. Chem Pharm Bull (Tokyo) 53:1513–1514

    CAS  Google Scholar 

  50. Girhard M, Machida K, Itoh M, Schmid RD, Arisawa A, Urlacher VB (2009) Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system. Microb Cell Fact 8:36

    Google Scholar 

  51. Wriessnegger T, Augustin P, Engleder M, Leitner E, Müller M, Kaluzna I, Schürmann M, Mink D, Zellnig G, Schwab H, Pichler H (2014) Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 24C:18–29

    Google Scholar 

  52. Denmeade SR, Jakobsen CM, Janssen S, Khan SR, Garrett ES, Lilja H, Christensen SB, Isaacs JT (2003) Prodrug as targeted therapy for prostate cancer 95

    Google Scholar 

  53. Drew DP, Krichau N, Reichwald K, Simonsen HT (2009) Guaianolides in apiaceae: perspectives on pharmacology and biosynthesis. Phytochem Rev 8:581–599

    CAS  Google Scholar 

  54. Shanmugam R, Kusumanchi P, Appaiah H, Cheng L, Crooks P, Neelakantan S, Peat T, Klaunig J, Matthews W, Nakshatri H, Sweeney CJ (2011) A water soluble parthenolide analogue suppresses in vivo tumor growth of two tobacco associated cancers, lung and bladder cancer, by targeting NF-κB and generating reactive oxygen species. Int J Cancer 128(10):2481–2494

    CAS  Google Scholar 

  55. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5:147–162

    CAS  Google Scholar 

  56. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 80, 330:1355–1358

    Google Scholar 

  57. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    CAS  Google Scholar 

  58. Kung Y, McAndrew R, Xie X, Liu C, Pereira J, Adams P, Keasling JD (2014) Constructing tailored isoprenoid products by structure-guided modification of geranylgeranyl reductase. Structure 22:1028–1036

    CAS  Google Scholar 

  59. Nieuwenhuizen NJ, Green S, Atkinson RG (2010) Floral sesquiterpenes and their synthesis in dioecious kiwifruit 61–63

    Google Scholar 

  60. Köllner TG, Gershenzon J, Degenhardt J (2009) Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry 70:1139–1145

    Google Scholar 

  61. Bowers W, Nault L, Webb R (1972) Aphid alarm pheromone : isolation, identification, synthesis. Science 80:1–2

    Google Scholar 

  62. Wang C, Yoon SH, Jang HJ, Chung YR, Kim JY, Choi ES, Kim SW (2011) Metabolic engineering of Escherichia coli for alpha-farnesene production. Metab Eng 13:648–655

    CAS  Google Scholar 

  63. Picaud S, Brodelius M, Brodelius PE (2005) Expression, purification and characterization of recombinant (E)-beta-farnesene synthase from Artemisia annua. Phytochemistry 66:961–967

    CAS  Google Scholar 

  64. Martin D, Fäldt J, Bohlmann J (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135:1908–1927

    CAS  Google Scholar 

  65. Maruyama T, Ito M, Honda G (2001) Molecular cloning, functional expression and characterization of (E)-beta farnesene synthase from Citrus junos. Biol Pharm Bull 24:1171–1175

    CAS  Google Scholar 

  66. Ro D-K, Newman KL, Paradise E, Keasling JD, Ouellet M, Eachus RA, Ho K, Ham T (2007) Polynucleotides encoding isoprenoid modifying enzymes and methods to use thereoff. US20100218283 A1

    Google Scholar 

  67. Ozaydin B, Burd H, Lee TS, Keasling JD (2013) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng 15:174–183

    CAS  Google Scholar 

  68. McAndrew RP, Peralta-Yahya PP, DeGiovanni A, Pereira JH, Hadi MZ, Keasling JD, Adams PD (2011) Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production. Structure 19:1876–1884

    CAS  Google Scholar 

  69. Inoue Y, Shiraishi A, Hada T, Hirose K, Hamashima H, Shimada J (2004) The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol Lett 237:325–331

    CAS  Google Scholar 

  70. Goldberg L, Haklai R, Bauer V, Heiss A, Kloog Y (2009) New derivatives of farnesylthiosalicylic acid (salirasib) for cancer treatment: farnesylthiosalicylamide inhibits tumor growth in nude mice models. J Med Chem 52:197–205

    CAS  Google Scholar 

  71. Grace MH (2002) Chemical composition and biological activity of the volatiles of Anthemis melampodina and Pluchea dioscoridis. Phytother Res 16:183–185

    CAS  Google Scholar 

  72. Hornby JM, Nickerson KW (2004) Enhanced production of Farnesol by Candida albicans treated with four azoles. Antimicrob Agents Chemother 48(6):2305–2307

    CAS  Google Scholar 

  73. Millis J, Maurina-brunker J, McMullin TW (2003) Production of farnesol and geranylgeraniol. US2003/0092144A1

    Google Scholar 

  74. Faulkner A, Chen X, Horazdovsky B, Charles J, Carman GM, Paul C, Chem JB, Rush J, Waechter CJ, Sternweis PC (1999). Carbohydrates, lipids, and other natural products: the LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in saccharomyces cerevisiae. J Biol Chem 274:14831–14837

    Google Scholar 

  75. Song L (2006) A soluble form of phosphatase in Saccharomyces cerevisiae capable of converting farnesyl diphosphate into E. E-farnesol Appl Biochem Biotechnol 128:149–158

    CAS  Google Scholar 

  76. Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82:837–845

    CAS  Google Scholar 

  77. Cheng A-X, Xiang C-Y, Li J-X, Yang C-Q, Hu W-L, Wang L-J, Lou Y-G, Chen X-Y (2007) The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 68:1632–1641

    CAS  Google Scholar 

  78. Sarria S, Wong B, Martín H, Keasling J, Peralta-Yahya P (2014) Microbial synthesis of pinene. ACS Synth Biol 3(7):466–475

    CAS  Google Scholar 

  79. Dahl RH (2011) Engineering a responsive, heterologous mevalonate pathway in Escherichia coli using microarrays. University of California at Berkeley, Berkeley

    Google Scholar 

  80. Ma SM, Garcia DE, Redding-Johanson AM, Friedland GD, Chan R, Batth TS, Haliburton JR, Chivian D, Keasling JD, Petzold CJ, Lee TS, Chhabra SR (2011) Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metab Eng 13:588–597

    CAS  Google Scholar 

  81. George KW, Chen A, Jain A, Batth TS, Baidoo EEK, Wang G, Adams PD, Petzold CJ, Keasling JD, Lee TS (2014) Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnol Bioeng 111:1648–1658

    CAS  Google Scholar 

  82. Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41

    CAS  Google Scholar 

  83. Behr A, Johnen L (2009) Myrcene as a natural base chemical in sustainable chemistry: a critical review. Chem Sus Chem 2(12):1072–1095

    CAS  Google Scholar 

  84. Papachristos DP, Karamanoli KI, Stamopoulos DC, Menkissoglu-Spiroudi U (2004) The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag. Sci. 60:514–520

    CAS  Google Scholar 

  85. Rastogi SC, Heydorn S, Johansen JD, Basketter DA (2001) Fragrance chemicals in domestic and occupational products. Contact Dermatitis 45:221–225

    CAS  Google Scholar 

  86. Zhou J, Wang C, Yoon S-H, Jang H-J, Choi E-S, Kim S-W (2014) Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation. J Biotechnol 169:42–50

    CAS  Google Scholar 

  87. Duetz WA, Bouwmeester H, van Beilen JB, Witholt B (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61:269–277

    CAS  Google Scholar 

  88. Chuck CH, Donnelly J (2014) The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Appl Energy 118:83–91

    CAS  Google Scholar 

  89. Yang J, Nie Q, Ren M, Feng H, Jiang X, Zheng Y, Liu M, Zhang H, Xian M (2013) Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol Biofuels 6:60

    CAS  Google Scholar 

  90. Breu F, Guggenbichler S, Wollmann J (2008) Verbenone (4,6,6-trimethyl-bicyclo (3.1.1) hept-3-en-2-one) (128986) fact sheet. Vasa 2–3

    Google Scholar 

  91. Mafra-Neto A, Lame F, de Fettig C, Munson A, Perring T, Stelinski L, Stoltman L, Mafra L, Borges R, Vargas R (2014) Manipulation of insect behavior with specialized pheromone and lure application technology (SPLAT®). In: Pest management with natural products. American Chemical Society

    Google Scholar 

  92. Chen W, Vermaak I, Viljoen A (2013) Camphor—a fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon—a review. Molecules 18:5434–5454

    CAS  Google Scholar 

  93. Jirovetz L, Buchbauer G, Denkova Z, Slavchev A, Stoyanova A, Schmidt E (2006) Chemical composition, antimicrobial activities and odor descriptions of various Salvia sp. and Thuja sp. essential oils. Ernährung/Nutrition 30(4):152–159

    CAS  Google Scholar 

  94. Zhang H, Liu Q, Cao Y, Feng X, Zheng Y, Zou H, Liu H, Yang J, Xian M (2014) Microbial production of sabinene—a new terpene-based precursor of advanced biofuel. Microb Cell Fact 13:20

    CAS  Google Scholar 

  95. Höld KM, Sirisoma NS, Ikeda T, Narahashi T, Casida JE (2000) Alpha-thujone (the active component of absinthe): gamma-aminobutyric acid type A receptor modulation and metabolic detoxification. Proc Natl Acad Sci USA 97:3826–3831

    Google Scholar 

  96. MacGregor JT, Layton LL, Buttery RG (1974) California bay oil. II. Biological effects of constituents. J Agric Food Chem 22:777–780

    CAS  Google Scholar 

  97. Nassini R, Materazzi S, Vriens J, Prenen J, Benemei S, De Siena G, la Marca G, Andrè E, Preti D, Avonto C, Sadofsky L, Di Marzo V, De Petrocellis L, Dussor G, Porreca F, Taglialatela-Scafati O, Appendino G, Nilius B, Geppetti P (2012) The “headache tree” via umbellulone and TRPA1 activates the trigeminovascular system. Brain 135:376–390

    Google Scholar 

  98. Braukus M (2013) NASA begins flight research campaign using alternate jet fuel [WWW Document]. URL http://www.nasa.gov/home/hqnews/2013/mar/. Accessed 20 Sep 2013

  99. Trimbur D, Im C-S, Dillon H, Day A, Franklin S, Coragliotta A (2011) Renewable chemicals and fuels from oleginous yeast. US20110190522 A1

    Google Scholar 

  100. Carter OA, Peters RJ, Croteau R (2003) Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry 64:425–433

    CAS  Google Scholar 

  101. Reiling K, Yoshikuni Y, Martin V, Newman J, Bohlmann J, Keasling J (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87:200–212

    CAS  Google Scholar 

  102. Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Soon Lee T, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci USA 108:19949–19954

    CAS  Google Scholar 

  103. Brennan TCR, Krömer JO, Nielsen LK (2013) Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane. Appl Environ Microbiol 79:3590–3600

    CAS  Google Scholar 

  104. Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32

    CAS  Google Scholar 

  105. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487

    Google Scholar 

  106. Carnesecchi S, Bras-Gonçalves R, Bradaia A, Zeisel M, Gossé F, Poupon M-F, Raul F (2004) Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Lett 215:53–59

    CAS  Google Scholar 

  107. Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Fäldt J, Miller B, Bohlmann J (2003) (E)-β-Ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily 15:1227–1241

    Google Scholar 

  108. Putman M, Veen HW, Van Konings WN, Hendrik W (2000) Molecular properties of bacterial multidrug transporters. Mol Prop Bact Multidrug Transporters 64(4):672–693

    CAS  Google Scholar 

  109. Dunlop MJ, Keasling JD, Mukhopadhyay A (2010) A model for improving microbial biofuel production using a synthetic feedback loop. Syst Synth Biol 4:95–104

    Google Scholar 

  110. Wagner S, Baars L, Ytterberg AJ, Klussmeier A, Wagner CS, Nord O, Nygren PA, van Wijk KJ, de Gier JW (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol. Cell. Proteomics 6:1527–1550

    CAS  Google Scholar 

  111. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, del Cardayré S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    CAS  Google Scholar 

  112. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    CAS  Google Scholar 

  113. Patnaik R (2008) Engineering complex phenotypes in industrial strains. Biotechnol Prog 24:38–47

    CAS  Google Scholar 

  114. Mirata MA, Heerd D, Schrader J (2009) Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochem 44:8

    Google Scholar 

  115. Rühl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656

    Google Scholar 

  116. Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419

    CAS  Google Scholar 

  117. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    CAS  Google Scholar 

  118. Cann AF, Liao JC (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol 81:89–98

    CAS  Google Scholar 

  119. Hull A, Golubkov I, Kronberg B, Marandzheva T, van Stam J (2006) An alternative fuel for spark ignition engines. Int J Engine Res 7:203–214

    CAS  Google Scholar 

  120. Rohdich F, Hecht S, Gärtner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A, Eisenreich W (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163

    CAS  Google Scholar 

  121. Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD (2007) Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol 73:6277–6283

    CAS  Google Scholar 

  122. Chou HH, Keasling JD (2012) Synthetic pathway for production of five-carbon alcohols from isopentenyl diphosphate. Appl Env Microbiol 78:7849–7855

    CAS  Google Scholar 

  123. Kuznetsova E, Proudfoot M, Gonzalez CF, Brown G, Omelchenko MV, Borozan I, Carmel L, Wolf YI, Mori H, Savchenko AV, Arrowsmith CH, Koonin EV, Edwards AM, Yakunin AF (2006) Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. J Biol Chem 281:36149–36161

    CAS  Google Scholar 

  124. McLennan AG (2006) The Nudix hydrolase superfamily. Cell Mol Life Sci 63:123–143

    CAS  Google Scholar 

  125. Zheng Y, Liu Q, Li L, Qin W, Yang J, Zhang H, Jiang X, Cheng T, Liu W, Xu X, Xian M (2013) Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels. Biotechnol Biofuels 6:57

    CAS  Google Scholar 

  126. Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381

    CAS  Google Scholar 

  127. Horton CE, Huang K-X, Bennett GN, Rudolph FB (2003) Heterologous expression of the Saccharomyces cerevisiae alcohol acetyltransferase genes in Clostridium acetobutylicum and Escherichia coli for the production of isoamyl acetate. J Ind Microbiol Biotechnol 30:427–432

    CAS  Google Scholar 

  128. Singh R, Vadlani PV, Harrison ML, Bennett GN, San K-Y (2008) Aerobic production of isoamyl acetate by overexpression of the yeast alcohol acetyl-transferases AFT1 and AFT2 in Escherichia coli and using low-cost fermentation ingredients. Bioprocess Biosyst Eng 31:299–306

    CAS  Google Scholar 

  129. Brown TR, Brown RC (2013) Techno-economics of advanced biofuel pathways. RSC Adv 3:5758–5764

    CAS  Google Scholar 

  130. Tyo KEJ, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760–765

    CAS  Google Scholar 

  131. Holtz WJ, Keasling JD (2010) Engineering static and dynamic control of synthetic pathways. Cell 140:19–23

    CAS  Google Scholar 

  132. Geris R, Simpson TJ (2009) Meroterpenoids produced by Fungi. Nat Prod Rep Aug 26(8):1063–1094

    Google Scholar 

  133. Cane D, Ikeda H (2012) Exploration and mining of the bacterial terpenome. Acc Chem Res 45(3):463–472

    CAS  Google Scholar 

  134. Itho T, Tokunaga K, Matsuda Y, Fujii I, Abe I, Ebizuka Y, Kushiro T (2010) Reconstitution of fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases. Nat Chem 2(10):858–864

    Google Scholar 

  135. Chooi YH, Hong YJ, Cacho RA, Tantillo DJ, Tang Y (2013) A cytochrome P450 serves as an unexpected terpene cyclase during fungal meroterpenoid biosynthesis. J Am Chem Soc 135(45):16805–16808

    CAS  Google Scholar 

  136. Meylemans HA, Quintana RL, Harvey BG (2012) Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel 97:560–568

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taek Soon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

George, K.W., Alonso-Gutierrez, J., Keasling, J.D., Lee, T.S. (2015). Isoprenoid Drugs, Biofuels, and Chemicals—Artemisinin, Farnesene, and Beyond. In: Schrader, J., Bohlmann, J. (eds) Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, vol 148. Springer, Cham. https://doi.org/10.1007/10_2014_288

Download citation

Publish with us

Policies and ethics