Skip to main content

Principles of Fluorescence Immunoassay

  • Chapter

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 4))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. A. Hemmilä, Applications of Fluorescence in Immunoassays (J. D. Winefordner and I. M. Kolthoff, series eds.), John Wiley & Sons, New York (1991).

    Google Scholar 

  2. K. Van Dyke and R. Van Dyke, Eds., Luminescence Immunoassay and Molecular Applications, CRC Press, Boca Raton, Florida (1990).

    Google Scholar 

  3. C. P. Price and D. J. Newman, Eds., Principles and Practice of Immunoassay, Stockton Press, New York (1991).

    Google Scholar 

  4. T. T. Ngo, Nonisotopic Immunoassay, Plenum Press, New York (1988).

    Google Scholar 

  5. W. P. Collins, Ed., Alternative Immunoassays, John Wiley & Sons, New York (1985).

    Google Scholar 

  6. E. P. Diamandis, Immunoassays with time-resolved fluorescence spectroscopy. Principles and applications, Clin. Biochem. 21, 139–150 (1988).

    CAS  PubMed  Google Scholar 

  7. J. F. Place, R. M. Sutherland, and C. Dähne, Opto-electronic immunosensors: A review of optical immunoassay at continuous surfaces, Biosensors 1, 321–353 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. J. P. Gosling, A decade of development in immunoassay methodology, Clin. Chem. 36, 1408–1427 (1990).

    CAS  PubMed  Google Scholar 

  9. V. P. Butler, Jr., D. H. Schmidt, T. W. Smith, E. Haber, B. D. Raynor, and P. Demartini, Effects of sheep digoxin-specific antibodies and their Fab fragments on digoxin pharmacokinetics in dogs, J. Clin. Invest. 59, 345–359 (1977).

    CAS  PubMed  Google Scholar 

  10. E. Lamoyi and A. Nisonoff, Preparation of F(ab’)2 fragments from mouse IgG of various subclasses, J. Immunol. Methods 56, 235–243 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. P. Parham, On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB/c mice, J. Immunol. 131, 2895–2902 (1983).

    CAS  PubMed  Google Scholar 

  12. G. Kohler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256, 495–497 (1975).

    CAS  PubMed  Google Scholar 

  13. Linscott’s Directory, 4877 Grange Road, Santa Rosa, California 95404.

    Google Scholar 

  14. J. H. Howanitz, Immunoassay innovations in label technology, Arch. Pathol. Lab. Med. 112, 775–779 (1988).

    CAS  PubMed  Google Scholar 

  15. E. Soini and I. Hemmilä, Fluoroimmunoassay: Present status and key problems, Clin. Chem. 25, 353–361 (1979).

    CAS  PubMed  Google Scholar 

  16. R. S. Davidson and M. M. Hilchenbach, The use of fluorescent probes in immunochemistry, Photochem. Photobiol. 52, 431–38 (1990).

    CAS  PubMed  Google Scholar 

  17. M. Brinkley, A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents, Bioconjugate Chem. 3, 2–13 (1992).

    Article  CAS  Google Scholar 

  18. S. H. Wong, Chemistry of Protein Conjugation and Cross-Linking, CRC Press, Boca Raton, Florida (1991).

    Google Scholar 

  19. R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, C. J. Lewis, and A. S. Waggoner, Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters, Bioconjugate Chem. 4, 105–111 (1993).

    Article  CAS  Google Scholar 

  20. T. A. Kelly, C. A. Hunter, D. C. Schindele, and B. V. Pepich, Aluminum phthalocyanine-streptavidin: New, sensitive fluorescent tracer for immunoassay, Clin. Chem. 37, 1283–1286 (1991).

    CAS  PubMed  Google Scholar 

  21. D. C. Schindele and G. E. Renzoni, Ultra Fluors: New fluorophores for immunological applications, J. Clin. Immunoassay 13, 182–186 (1990).

    Google Scholar 

  22. S. A. Soper, Q. L. Mattingly, and P. Vegunta, Photon burst detection of single near-infrared fluorescent molecules, Anal. Chem. 65, 740–747 (1993).

    Article  CAS  Google Scholar 

  23. L. E. Morrison, Time-resolved detection of energy transfer: Theory and application to immunoassays, Anal. Biochem. 174, 101–120 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. M. N. Kronick and P. D. Grossman, Immunoassay techniques with fluorescent phycobiliprotein conjugates, Clin. Chem. 29, 1582–1586 (1983).

    CAS  PubMed  Google Scholar 

  25. J. D. Rodwell, V. L. Alvarez, C. Lee, A. D. Lopes, J. W. F. Goers, H. D. King, H. J. Powsner, and T. J. McKearn, Site-specific covalent modification of monoclonal antibodies: in vitro and in vivo evaluations, Proc. Natl. Acad. Sci. USA 83, 2632–2636 (1986).

    CAS  PubMed  Google Scholar 

  26. M.-M. Chua, S.-T. Fan, and F. Karush, Attachment of immunoglobulin to liposomal membrane via protein carbohydrate, Biochim. Biophys. Acta 800, 291–300 (1984).

    CAS  PubMed  Google Scholar 

  27. B. Packard and M. Edidin, Site-directed labeling of a monoclonal antibody: Targeting to a disulfide bond, Biochemistry 25, 3548–3552 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. F. J. Martin and D. Papahadjopoulos, Irreversible coupling of immunoglobulin fragments to preformed vesicles, J. Biol. Chem. 257, 286–288 (1982).

    CAS  PubMed  Google Scholar 

  29. E. Ishikawa, M. Imagawa, S. Hashida, S. Yoshitake, Y. Hamaguchi, and T. Ueno, Enzyme-labeling of antibodies and their fragments for enzyme immunoassay and immunohistochemical staining, J. Immunoassay 4, 209–327 (1983).

    CAS  PubMed  Google Scholar 

  30. D. L. Meadows, J. S. Shafer, and J. S. Schultz, J. Immunol. Methods 143, 263–272 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).

    Google Scholar 

  32. E. Amler, L. Mazzanti, E. Bertoli, and A. Kotyk, Lifetime distribution of low sample concentrations: A new cuvette for highly accurate and sensitive fluorescence measurements, Biochem. Int. 27, 771–776 (1992).

    CAS  PubMed  Google Scholar 

  33. W. Groskopf, B. Green, L. Sohn, and S. Hsu, Furosemide as a displacing agent in assay of total triiodothyronine, Clin. Chem. 37, 587–588 (1991).

    CAS  PubMed  Google Scholar 

  34. A. J. Ozinskas, H. Malak, J. Joshi, H. Szmacinski, J. Britz, R. B. Thompson, P. A. Koen, and J. R. Lakowicz, Homogeneous model immunoassay of thyroxine by phase-modulation fluorescence spectroscopy, Anal. Biochem. 213, 264–270 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. R. P. Ekins, Current concepts and future developments, in: Alternative Immunoassays (W. P. Collins, ed.), pp. 219–237, John Wiley & Sons, New York (1985).

    Google Scholar 

  36. J. El Jabri, S. De Lauzon, and N. Cittanova, Estrogen fluoroimmunoassay with a fluorimeter designed for low-intensity light detection, Anal. Chim. Acta 227, 129–134 (1989)

    Google Scholar 

  37. W. K. Wang, L. T. Ho, Y. Chiang, and T.C. Chen, A space-resolved fluorometer and its application to immunoassay, J. Immunol. Methods 112, 173–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. W. K Wang, L. T. Ho, and Y. Chiang, Space-resolved fluoroimmunoassay for quantifying α-feto-protein in serum, Clin. Chem. 39, 1659–1661 (1993).

    CAS  PubMed  Google Scholar 

  39. V. M. Bertram, M. P. Bailey, and B. F. Rocks, Multiple releasable fluorescein labels for immunoassay. The principle illustrated by an immunoassay for antibodies to the human immunodeficiency virus, Ann. Clin. Biochem. 28, 487–491 (1991).

    PubMed  Google Scholar 

  40. T. L. Keimig and L. B. McGown, Micellar modification of the spectral, intensity and lifetime characteristics of fluorescein-labeled phenobarbital, Talanta 33, 653–656 (1986).

    Article  CAS  Google Scholar 

  41. O. R. Bethell, M. Dawson, and M. J LaFoe, Characterization of monoclonal antibodies to cell surface antigens by particle concentration fluorescence immunoassay (PCFIA), BioTechniques 3, 466–473 (1985).

    Google Scholar 

  42. K. Auditore-Hargreaves, R. L. Houghton, N. Monji, J. H. Priest, A. S. Hoffman, and R. C. Nowinski, Phase-separation immunoassays, Clin. Chem. 33, 1509–1516 (1987).

    CAS  PubMed  Google Scholar 

  43. W. B. Dandliker, R. J. Kelly, J. Dandliker, J. Farquhar, and J. Levin, Fluorescence polarization immunoassay. Theory and experimental method, Immunochemistry 10, 219–227 (1973).

    Article  CAS  PubMed  Google Scholar 

  44. M. Fiore, J. Mitchell, T. Doan, R Nelson, G. Winter, C. Grandone, K. Zeng, R. Haraden, J. Smith, K. Harris, J. Leszczynski, D. Berry, S. Safford, G. Barnes, A. Scholnick, and K. Ludington, The Abbott IMx automated benchtop imunochemistry analyzer, Clin. Chem. 34, 1726–1732 (1988).

    CAS  PubMed  Google Scholar 

  45. R. A. A. Watson, J. Landon, E. J. Shaw, and D. S. Smith, Polarisation fluoroimmunoassay of gentamicin, Clin. Chim. Acta 73, 51–55 (1976).

    Article  CAS  PubMed  Google Scholar 

  46. A R. McGregor, J. C). Crookall-Grecning, J. Landon, and D. S. Smith, Polarisation fluoroimmunoassay of phenytoin, Clin. Chim. Acta 83, 161–166 (1978).

    Article  CAS  PubMed  Google Scholar 

  47. F. V Bright, Multifrequency phase fluorescence study of hapten-antibody complexation, Anal. Chem. 61, 309–313 (1989).

    CAS  PubMed  Google Scholar 

  48. F. Perrin, Polarization de la lumiere de fluorescence. Vie moyenne de molecules dans l’etat excite, J. Phys. Radium. 7, 390–401 (1926).

    CAS  Google Scholar 

  49. F. V. Bright and L. B. McGown, Homogeneous immunoassay of phenobarbital by phase-resolved fluorescence spectroseopy, Talanta 32, 15–18 (1985).

    Article  CAS  Google Scholar 

  50. S. A, Eremin, D. E. Schiavetta, H. Lotey, D. S. Smith, and J. Landon, Design and development of a single-reagent polarization fluoroimmunoassay for methamphetamine, Ther. Drug Monitoring 10, 327–332 (1988).

    CAS  Google Scholar 

  51. T. Uematsu, R. Sato, A. Mizuno, M. Nishimoto, S. Nagashima, and M. Nakashima, A fluorescence polarization immunoassay evaluated for quantifying astromicin, a new aminoglycoside antibiotic, Clin. Chem. 34, 1880–1882 (1988).

    CAS  PubMed  Google Scholar 

  52. P. Urios, N. Cittanova, and M.-F. Jayle, Immunoassay of the human chorionic gonadotropin using fluorescence polarization, FEBS Lett. 94, 54–58 (1978).

    Article  CAS  PubMed  Google Scholar 

  53. K. Nithipatikom and L. B. McGown, Homogeneous immunochemical technique for determination of human lactoferrin using excitation transfer and phase-resolved fluorometry. Anal. Chem. 59, 423–427 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. P. Urios and N. Cittanova, Adaptation of fluorescence polarization immunoassay to the assay of macromolecules, Anal. Biochem. 185, 308–312 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. S. H. Grossman. Fluorescence polarization immunoassay applied to macromolecules: Creatine kinase-BB, J. Clin. Immunoassay 7, 96–100 (1984).

    CAS  Google Scholar 

  56. M. Tsuruoka, E. Tamiya, and I. Karube, Fluorescence polarization immunoassay employing immobilized antibody, Biosensors and Bioelectronics 6, 501–505 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. R. P. Fisher and J. D. Winefordner, Pulsed source-time resonance phosphorimetry, Anal. Chem. 44, 948–956 (1972).

    CAS  Google Scholar 

  58. C. G. Barnes and J. D. Winefordner, Optimization of time-resolved phosphorimetry, Appl. Spectrosc. 38, 214–228 (1984).

    Article  CAS  Google Scholar 

  59. E. Soini and H. Kojola, Time-resolved fluorometer for lanthanide chelates-a new generation of nonisotopic immunoassays, Clin. Chem. 29, 65–68 (1983).

    CAS  PubMed  Google Scholar 

  60. N. Sabbatini, M. Guardigli, A. Mecati, V. Balzani, R. Ungaro, E. Ghidini, A. Casnati, and A. Pochini, Encapsulation of lanthanide ions in calixarene receptors. A strongly luminescent terbium(3+) complex, J. Chem. Soc. Chem. Commun. 878–879 (1990).

    Google Scholar 

  61. V.-M. Mukkala and J. Kankare, New fluorescent Eu(III) and Tb(III) chelates of 2,2′-bipyridine derivatives, Eur. J. Solid State Inorg. Chem, 29, 53–56 (1992).

    CAS  Google Scholar 

  62. G. F. de Sa, L. H. A. Nunes, and O. L. Malta, Synthesis, characterization and luminescence of europium(III) and terbium(III) complexes of 3-aminopyrazine-2-carboxylic acid, J. Chem. Res. (S), 78–79 (1992).

    Google Scholar 

  63. L. Prodi, M. Maestri, R. Ziessel, and V. Balzani, Luminescent Eu3+, Tb3+, and Gd3+ complexes of a branched-triazacyclononane ligand containing three 2,2′-bipyridine units, Inorg. Chem. 30, 3798–3802 (1991).

    Article  CAS  Google Scholar 

  64. V. Balzani and R. Ballardini, New trends in the design of luminescent metal complexes, Photochem. Photobiol. 52, 409–416 (1990).

    CAS  Google Scholar 

  65. M. P. Bailey, B. F. Rocks, and C. Riley, Chelated terbium as a label in fluorescence immunoassay, in: Nonisotopic Immunoassay (T. Ngo, ed.), pp. 187–197, Plenum Press, New York (1988).

    Google Scholar 

  66. I. A. Hemmilä, S. Dakubu, V.-M. Mukkala, H. Siitari, and T. Lövgren, Europium as a label in time-resolved immunofluorometric assays, Anal. Biochem. 137, 335–343 (1984).

    PubMed  Google Scholar 

  67. I. A. Hemmilä, Time-resolved fluorometric determination of terbium in aqueous solution, Anal. Chem. 57, 1676–1681 (1985).

    Google Scholar 

  68. T. Lövgren, I. Hemmilä, K. Pettersson and P. Halonen, Time-resolved fluorometry in immunoassay, in: Alternative Immunoassays (W. P. Collins, ed.) pp. 203–217, John Wiley & Sons, New York (1985).

    Google Scholar 

  69. E. Soini, Pulsed light, time-resolved fluorometric immunoassay, in: Monocolonal Antibodies and New Trends in Immunoassays (Ch. A. Bixollon, ed.) pp. 197–208, Elsevier Science Publishers, Amsterdam (1984).

    Google Scholar 

  70. V.-M. Mukkala, H. Mikoia, and I. Hemmilä, The synthesis and use of activated N-benzyl derivatives of diethylenetriaminetetraacetic acids: Alternative reagents for labeling of antibodies with metal ions, Anal. Biochem. 176, 319–325 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. P. Helsingius, 1. Hemmilä, and T. Lövgren, Solid-phase immunoassay of digoxin by measuring time-resolved fluorescence, Clin. Chem. 32, 1767–1769 (1986).

    CAS  PubMed  Google Scholar 

  72. K.-T. Yeo, T. M. Sioussat, J. D. Faix, D. R. Senger, and T.-K. Yeo, Development of time-resolved immunofluorometric assay of vascular permeability factor, Clin. Chem. 38, 71–75 (1992).

    CAS  PubMed  Google Scholar 

  73. P. Nuutila, P. Koskinen, K. Irjala, L. Linko, H.-L. Kaihola, J. U. Eskola, R. Erkkola, P. Seppcälä, and J. Viikari, Two new two-step immunoassays for free thyroxine evaluated: Solid-phase radioimmunoassay and time-resolved fluoroimmunoassay, Clin. Chem. 36, 1355–1360 (1990).

    CAS  PubMed  Google Scholar 

  74. T. Lövgren, I. Hemmilä, K. Pettersson, J. U. Eskola, and E. Bertoft, Determination of hormones by time-resolved fluoroimmunoassay, Talanta 31, 909–916 (1984).

    Google Scholar 

  75. E. P. Diamandis and R. C. Morton, Time-resolved fluorescence using a europium chelate of 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid (BCPDA). Labelling procedures and applications in immunoassays, J. Immunol. Methods 112, 43–52 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. E. P. Diamandis and T. K. Christopoulos, Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays, Anal. Chem. 62, 1149A–1157A (1990).

    CAS  PubMed  Google Scholar 

  77. V. Bhayana and E. P. Diamandis, A double monoclonal time-resolved immunofluorometric assay of carcinoembryonic antigen in serum, Clin. Biochem. 22, 433–138 (1989).

    CAS  PubMed  Google Scholar 

  78. E. Reichstein, Y. Shami, M. Ramjeesingh, and E. P. Diamandis, Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label, Anal. Chem. 60, 1069–1074 (1988).

    Article  CAS  PubMed  Google Scholar 

  79. M. J. Khosravi and E. P. Diamandis, Immunofluorometry of choriogonadotropin by time-resolved fluorescence spectroscopy, with a new europium chelate as label, Clin. Chem. 33, 1994–1999 (1987).

    CAS  PubMed  Google Scholar 

  80. M. A. Chan, A. C. Bellem, and E. P. Diamandis, Time-resolved immunofluorometric assay of alpha-fetoprotein in serum and amniotic fluid with a novel detection system, Clin. Chem. 33, 2000–2003 (1987).

    CAS  PubMed  Google Scholar 

  81. P. Shankaran, E. Reichstein, M. J. Khosravi, and E. P. Diamandis, Detection of immunoglobulins G and M to rubella virus by time-resolved immunofluorometry, J. Clin. Microbiology 28, 573–579 (1990).

    CAS  Google Scholar 

  82. E. P. Diamandis and T. K. Christopoulos, Time-resolved immunofluorometric detection of antigens separated by high-performance liquid chromatography and coated to polystyrene, BioTechniques 10, 646–648 (1991).

    CAS  PubMed  Google Scholar 

  83. T. K. Christopoulos and E. P. Diamandis, Enzymatically amplified time-resolved fluorescence immunoassay with terbium chelates, Anal. Chem. 64, 342–346 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. A. Papanastasiou-Diamandi, T. K. Christopoulos, and E. P. Diamandis, Ultrasensitive thyrotropin immunoassay based on enzymatically amplified time-resolved fluorescence with a terbium chelate, Clin. Chem. 38, 545–548 (1992).

    CAS  PubMed  Google Scholar 

  85. R. A. Evangelista, A. Pollak, and E. F. G. Templeton, Enzyme-amplified lanthanide luminescence for enzyme detection in bioanalytical assays, Anal. Biochem. 197, 213–224 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. P. L. Khanna, Fluorescence energy transfer immunoassays, in: Nonisotopic Immunoassay (T. T. Ngo, ed.), pp. 211–229, Plenum Press, New York (1988).

    Google Scholar 

  87. K. Albertsson-Wickland, C. Jansson, S. Rosberg, and Anne Novamo, Time-resolved immunofluorometric assay of human growth hormone, Clin. Chem. 39, 1620–1625 (1993).

    Google Scholar 

  88. S. E. Kakabakos, T. K. Christopoulos, and E. P. Diamandis, Multianalyte immunoassay based on spatially distinct fluorescent areas quantified by laser-excited solid-phase time-resolved fluorometry, Clin. Chem. 38, 338–342 (1992).

    CAS  PubMed  Google Scholar 

  89. Y.-Y. Xu, K. Pettersson, K. Blomberg, I. Hemmilä, H. Mikola, and T. Lövgren, Simultaneous quadruple-label fluorometric immunoassay of thyroid-stimulating hormone, 17 α-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase, Clin. Chem. 38, 2038–2043 (1992).

    CAS  PubMed  Google Scholar 

  90. I. Hemmilä, O. Malminen, H. Mikola, and T. Lövgren, Homogeneous time-resolved fluoroimmunoassay of thyroxin in serum, Clin. Chem. 34, 2320–2322 (1988).

    PubMed  Google Scholar 

  91. G Barnard, F. Kohen, H. Mikola, and T. Lövgren, Measurement of estrone-3-glucuronide in urine by rapid, homogeneous time-resolved fluoroimmunoassay, Clin. Chem. 35, 555–559 (1989).

    CAS  PubMed  Google Scholar 

  92. E. F. Ullman, M. Schwarzberg, and K. E. Rubenstein, Fluorescent excitation transfer immunoassay. A general method for determination of antigens, J. Biol. Chem. 251, 4172–4178 (1976).

    CAS  PubMed  Google Scholar 

  93. I. B. Berlman, in: Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed., Academic Press, New York (1971).

    Google Scholar 

  94. M. N. Kronick, Phycobiliproteins as labels in immunoassay, in: Nonisotopic Immunoassay (T. Ngo, ed.), pp. 163–185, Plenum Press, New York (1988).

    Google Scholar 

  95. P. L. Khanna and E. F. Ullman, 4′,5′-Dimethoxy-6-carboxyfluorescein: A novel dipole-dipole coupled fluorescence energy transfer acceptor useful for fluorescence immunoassays, Anal. Biochem. 108, 156–161 (1980).

    Article  CAS  PubMed  Google Scholar 

  96. E. F. Ullman and P. L. Khanna, Fluorescence excitation transfer immunoassay (FETI), Methods in Enzymology 74, 28–60 (1981).

    CAS  PubMed  Google Scholar 

  97. I. Wieder and R. L. Hale, PCT Patent Application WO 87/07,955 (1987).

    Google Scholar 

  98. M. Genet, V. Brandel, M.-P. Lahalle, and E. Simoni, Electronic energy transfer between coumarin 460 and Eu3+ in thorium phosphate xerogel, C. R. Acad. Sci. Paris 311 (Series II), 1321–1325 (1990).

    CAS  Google Scholar 

  99. E. Gratton and M. Limkeman, A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution, Biophys. J. 44, 665–669 (1983).

    Google Scholar 

  100. J. R. Lakowicz and B. P. Maliwal, Construction and performance of a variable-frequency phase-modulation fluorometer, Biophys. Chem. 21, 61–78 (1985).

    Article  CAS  PubMed  Google Scholar 

  101. J. R. Lakowicz, G. Laczko, and 1. Gryczynski, A 2 GHz frequency-domain fluorometer, Rev. Sci. Instrum. 57, 2499–2506 (1986).

    Article  CAS  Google Scholar 

  102. R. B. Thompson, J. K. Frisoli, and J. R. Lakowicz, Phase fluorometry using a continuously modulated laser diode, Anal. Chem. 64, 2075–2078 (1992).

    Article  CAS  Google Scholar 

  103. R. D. Spencer and G. Weber, Measurement of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer, Ann. N.Y. Acad. Sci. 158, 361–376 (1969).

    CAS  Google Scholar 

  104. J. R. Lakowicz and S. Heating, Binding of an indole derivative to micelles as quantified by phase-sensitive detection of fluorescence, J. Biol. Chem. 5519–5524 (1983).

    Google Scholar 

  105. F. V. Bright, T. L. Keimig, and L. B. McGown, Thermodynamic binding parameters evaluated by using phase-resolved fluorescence spectroscopy, Anal. Chim. Acta 175, 189–201 (1985).

    Article  CAS  Google Scholar 

  106. Y. R. Tahboub and L. B. McGown, Phase-resolved fluoroimmunoassay of human serum albumin, Anal. Chim. Acta 182, 185–191 (1986).

    Article  CAS  Google Scholar 

  107. J. R. Lakowicz, B. Maliwal, A. J. Ozinskas, and R. B. Thompson, Fluorescence lifetime energy-transfer immunoassay quantified by phase-modulation fluorometry. Sensors and Actuators B 12, 65–70 (1993).

    CAS  Google Scholar 

  108. J. P. O’Connell, R. L. Campbell, B. M. Fleming, T. J. Mercolino, M. D. Johnson, and D. A. McLaurin, A highly sensitive immunoassay system involving antibody-coated tubes and liposome-entrapped dye, clin. Chem. 31, 1424–1426 (1985).

    Google Scholar 

  109. A. L. Plant, M. V. Brizgys, L. Locasio-Brown, and R. A. Durst, Generic liposome reagent for immunoassays. Anal. Biochem. 176, 420–426 (1989).

    Article  CAS  PubMed  Google Scholar 

  110. M. Fiechtner, M. Wong, C. Bieniarz, and M. T. Shipchandler, Hydrophilic fluorescein derivatives: Useful reagents for liposome immunolytic assays, Anal. Biochem. 180, 140–146 (1989).

    Article  CAS  PubMed  Google Scholar 

  111. M. A. Gerber, M. F. Randolph, and K. K. DeMeo, Liposome immunoassay for rapid identification of group A streptococci directly from throat swabs, J. clin. Microbiol. 28, 1463–1464 (1990).

    CAS  PubMed  Google Scholar 

  112. Y. Tatsu, S. Yamamura, and S. Yoshikawa, Fluorescent fibre-optic immunosensing system based on complement lysis of liposome containing carboxyfluorescein, Biosensors and Bioelectronics 7, 741–745 (1992).

    Article  CAS  PubMed  Google Scholar 

  113. L. Locascio-Brown, A. L. Plant, V. Horvath, and R. A. Durst, Liposome flow injection immunoassay: Implications for sensitivity, dynamic range, and antibody regeneration. Anal. Chem. 62, 2587–2593 (1990).

    Article  CAS  PubMed  Google Scholar 

  114. M. Umeda, Y. Ishimori, K. Yoshikawa, M. Takada, and T. Yasuda, Liposome immune lysis assay (LILA), J. Immunol. Methods 95, 15–21 (1986).

    CAS  PubMed  Google Scholar 

  115. P. Vadgama and P. W. Crump, Biosensors: Recent trends, a review, Analyst 117, 1657–1670 (1992).

    Article  CAS  Google Scholar 

  116. D. G. Buerk, Biosensors, Technomic Publishing Co., Lancaster, Pennsylvania (1993).

    Google Scholar 

  117. O. S. Wolfbeis, Ed., Fiber Optic Chemical Sensors and Biosensors, CRC Press, Boca Raton, Florida (1991).

    Google Scholar 

  118. F. P. Anderson and W. G. Miller, Fiber optic immunochemical sensor for continuous, reversible measurement of phenytoin, Clin. Chem. 34, 1417–1421 (1988).

    CAS  PubMed  Google Scholar 

  119. W. G. Miller and F. P. Anderson, Antibody properties for chemically reversible biosensor applications, Anal. Chim. Acta 227, 135–143 (1989).

    CAS  Google Scholar 

  120. J. R. Astles and W. G. Miller, Reversible fiber-optic immunosensor measurements, Sensors and Actuators B 11, 73–78 (1993).

    Google Scholar 

  121. W. G. Miller and J. R. Astles, First European Conference on Optical Sensors and Biosensors, Graz, Austria, 12–15 April (1992).

    Google Scholar 

  122. S. M. Barnard and D. R. Walt, Chemical sensors based on controlled-release polymer systems, Science 251, 927–929 (1991).

    CAS  PubMed  Google Scholar 

  123. F. V. Bright, T. A. Betts, and K. S. Litwiler, Regenerable fiber-optic-based immunosensor, Anal. Chem. 62, 1065–1069 (1990).

    Article  CAS  PubMed  Google Scholar 

  124. B. Reck, K. Himmelspach, N. Opitz, and D. W. Lübbers, Possibilities and limitations of continuous thyroxine measurement in an optode using the principle of homogeneous fluoroimmunoassay, Analyst 113, 1423–1426 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. R. D. Petrea, M. J. Sepaniak, and T. Vo-Dinh, Fiber-optic time-resolved fluorimetry for immunoassays, Talanta 35, 139–144 (1988).

    Article  CAS  Google Scholar 

  126. R. Sutherland. C. Dähne, R. Slovacek, and B. Bluestein, Interface immunoassays using the evanescent wave, in: Alternative Immunoassays (W. P. Collins, ed.). pp. 331–357, John Wiley & Sons, New York (1985).

    Google Scholar 

  127. E. H. Lee, R. E. Benner, J. B. Fenn, and R. K. Chang, Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation, Appl. Optics 18, 862–870 (1979).

    CAS  Google Scholar 

  128. C. K. Carniglia, L. Mandel, and H. Drexhage, Absorption and emission of evanescent photons, J. Opt. Soc. Am. 62, 479–486 (1972).

    CAS  Google Scholar 

  129. J. N. Herron, K. D. Caldwell, D. A. Christensen, S. Dyer, V. Hlady, P. Huang, V. Janatova, H.-K. Wang, and A.-P Wei, Fluorescent irnmunosensors using planarwaveguides, Proc. SPIE 1885, 28–39 (1993).

    CAS  Google Scholar 

  130. B. J. Tromberg, M. J. Sepaniak, T. Vo-Dinh, and G. D. Griffin, Fiber-optic chemical sensors for competitive binding fluoroimmunoassay. Anal. Chem. 59, 1226–1230 (1987).

    Article  CAS  PubMed  Google Scholar 

  131. R. A. Ogert, L. C Shrivcr-Lake, and F S. Ligler, Toxin detection using a fiber optic-based biosensor, Proc. SPIE 1885, 11–17 (1993).

    CAS  Google Scholar 

  132. R. A. Hadley, R. A. L. Drake, 1. A. Shanks, F. R. S., A. M. Smith, and P. R. Stephenson, Optical biosensors for immunoassays: The fluorescence capillary fill device, Phil. Trans. R. Soc. Lond. B 316, 143–160 (1987)

    Google Scholar 

  133. Y. Zhou, J. V. Magill, R. M. De La Rue. P. J. R. Laybourn, and W. Cushley, Evanescent fluorescence immunoassays performed with a disposable ion-exchanged patterned waveguide, Sensors and Actuators B 11, 245–250 (1993).

    Google Scholar 

  134. V. Hlady, J. N. Lin, and J. D. Andrade, Spatially resolved detection of antibody-antigen reaction on solid/liquid interlace using total internal reflection excited antigen fluorescence and charge-coupled device detection, Biosens. Bioelectron. 5, 291–301 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ozinskas, A.J. (2002). Principles of Fluorescence Immunoassay. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-306-47060-8_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-47060-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44784-6

  • Online ISBN: 978-0-306-47060-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics