Skip to main content
Log in

Spatial effects in modeling pharmacokinetics of rapid action drugs

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a model to describe the time course of plasma concentration of neuromuscular blocking agents used as anesthetics during surgery. This model, which overcomes the limitations of the classical compartment models routinely used in pharmacokinetics, incorporates spatial effects due to heterogeneity in the circulation: it takes the form of a dispersion equation on a circular domain, with a time-dependent leakage term. This term is fitted to the functional form desired once first-stage transients have died out. Comparisons are made with clinical data by adjusting three parameters in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avram, M. J., T. C. Krejcie and T. K. Henthorn (1990). The relationship of age to the pharmacokinetics of early drug distribution: the concurrent disposition of thiopental and indocyanine green. Anesthesiology 72, 403–411.

    Google Scholar 

  • Avram, M. J., T. C. Krejcie, C. U. Niemann, C. Klein, W. B. Gentry, C. A. Shanks and T. K. Henthorn (1997). The effect of halotane on the recirculatory pharmacokinetics of physiologic markers. Anesthesiology 87, 1381–1393.

    Article  Google Scholar 

  • Bischoff, K. B. (1986). Physiological pharmacokinetics. Bull. Math. Biol. 48, 309–322.

    Article  MATH  MathSciNet  Google Scholar 

  • Cassot, F., A. Saadjan and C. McKay (1978). Heat and mass transfer of a thermal indicator in a pulsatile flow through the cardio-pulmonary system. Med. Prog. Technol. 5, 203–214.

    Google Scholar 

  • Chiou, W. L. (1979). Potential pitfalls in the conventional pharmacokinetic studies: effects of the initial mixing of drug in blood and the pulmonary first-pass elimination. J. Pharmacokinet. Biopharm. 7, 527–536.

    Article  Google Scholar 

  • DiStefano, J. J. III (1989). Hormone Kinetic Analysis, in Endocrinology, 2nd edn, Vol. 3, L. J. DeGroot (Ed.), Philadelphia: W. B. Saunders Company, pp. 2726–2740.

    Google Scholar 

  • Donati, F., F. Varin, J. Ducharme, S. S. Gill, Y. Théorêt and D. R. Bevan (1991). Pharmacokinetics and pharmacodynamics of atracurium obtained with arterial and venous blood samples. Clin. Pharmacol. Ther. 49, 515–522.

    Article  Google Scholar 

  • Ducharme, J., F. Varin, D. R. Bevan and F. Donati (1993). Importance of early blood sampling on vecuronium pharmacokinetics and pharmacodynamic parameters. Clin. Pharmacokinet. 24, 507–518.

    Article  Google Scholar 

  • Goresky, C. A. (1984). The modeling of tracer exchange and sequestration in the liver. Federation Proc. 43, 154–160.

    Google Scholar 

  • Goresky, C. A., G. G. Bach, A. W. Wolkoff, C. P. Rose and D. Cousineau (1985). Sequestered tracer outflow in multipleindicator dilution experiments. Hepatology 5, 805–814.

    Google Scholar 

  • Henthorn, T. K., M. J. Avram, T. C. Krejcie, C. A. Shanks, A. Asada and D. A. Kaczynski (1992). Minimal compartmental model of circulatory mixing of indocyanine green. Am. J. Physiol. 262, H903–H910.

    Google Scholar 

  • Jacquez, J. A. (1996). Compartmental Analysis in Biology and Medicine, 3rd edn, Ann Arbor: The University of Michigan.

    Google Scholar 

  • Knapp, W. H., H. J. Lüdecke and J. Doll (1979). Calculation of residence time distributions of intravascular radioactive tracer in fields of external registration. Eur. J. Nucl. Med. 4, 471–477.

    Article  Google Scholar 

  • Krejcie, T. C., T. K. Henthorn, C. U. Niemann, C. Klein, D. K. Gupta, W. B. Gentry, C. A. Shanks and M. J. Avram (1996). Recirculatory pharmacokinetics models of markers of blood, extracellular fluid and total body water administered concomitantly. J. Pharmacol. Exp. Ther. 278, 1050–1057.

    Google Scholar 

  • Leblanc, P. P., J. M. Aiache, J. G. Besner, P. Buri, M. Lesne and coll. (1997). Traité de Biopharmacie et Pharmacocinétique, 3rd edn, Montréal: Les Presses de l’Université de Montréal.

    Google Scholar 

  • MacDonald, N. (1978). Time Lags in Biological Models, New York: Springer.

    MATH  Google Scholar 

  • Norwich, K. H. (1997). Noncompartmental models of whole-body clearance of tracers: a review. Ann. Biomed. Eng. 25, 421–439.

    Google Scholar 

  • Roberts, M. S. and M. Rowland (1986). A dispersion model of hepatic elimination: 1. Formulation of the model and bolus considerations. J. Pharmacokinet. Biopharm. 14, 227–260.

    Article  Google Scholar 

  • Whittaker, E. T. and G. N. Watson (1996). A Course of Modern Analysis, 4th edn, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Zhu, Y., G. Audibert, F. Donati and F. Varin (1997). Pharmacokinetic-pharmacodynamic modeling of doxacurium: effect of input rate. J. Pharmacokinet. Biopharm. 25, 23–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Bélair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafrance, P., Lemaire, V., Varin, F. et al. Spatial effects in modeling pharmacokinetics of rapid action drugs. Bull. Math. Biol. 64, 483–500 (2002). https://doi.org/10.1006/bulm.2001.0281

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0281

Keywords

Navigation