Skip to main content

Advertisement

Log in

Computational experience with a parallel algorithm for tetrangle inequality bound smoothing

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Determining molecular structure from interatomic distances is an important and challenging problem. Given a molecule with n atoms, lower and upper bounds on interatomic distances can usually be obtained only for a small subset of the \(\frac{{n(n - 1)}}{2}\) atom pairs, using NMR. Given the bounds so obtained on the distances between some of the atom pairs, it is often useful to compute tighter bounds on all the \(\frac{{n(n - 1)}}{2}\) pairwise distances. This process is referred to as bound smoothing. The initial lower and upper bounds for the pairwise distances not measured are usually assumed to be 0 and ∞.

One method for bound smoothing is to use the limits imposed by the triangle inequality. The distance bounds so obtained can often be tightened further by applying the tetrangle inequality—the limits imposed on the six pairwise distances among a set of four atoms (instead of three for the triangle inequalities). The tetrangle inequality is expressed by the Cayley—Menger determinants. For every quadruple of atoms, each pass of the tetrangle inequality bound smoothing procedure finds upper and lower limits on each of the six distances in the quadruple. Applying the tetrangle inequalities to each of the ( n4 ) quadruples requires O(n 4) time. Here, we propose a parallel algorithm for bound smoothing employing the tetrangle inequality. Each pass of our algorithm requires O(n 3 log n) time on a CREW PRAM (Concurrent Read Exclusive Write Parallel Random Access Machine) with \(O\left( {\frac{n}{{\log n}}} \right)\) processors. An implementation of this parallel algorithm on the Intel Paragon XP/S and its performance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Blumenthal, L. M. (1970). Theory and Applications of Distance Geometry, Bronx, NY: Chelsea Publishing Company.

    MATH  Google Scholar 

  • Brouwer, A. E. (1979). Optimal packings of k 4’s into a k n . J. Comb. Theory 26, 278–297.

    Article  MATH  MathSciNet  Google Scholar 

  • Brünger, A. T. and M. Nilges (1993). Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR-spectroscopy. Q. Rev. Biophys. 26, 49–125.

    Article  Google Scholar 

  • Chouinard, L. G. (1983). Partitions of the 4-subsets of a 13-set into disjoint projective planes. Discrete Math. 45, 297–300.

    Article  MATH  MathSciNet  Google Scholar 

  • Colbourn, C. J. and J. H. Dinitz (1996). THE CRC Handbook of Combinatorial Designs, Boca Raton, FL: CRC Press.

    MATH  Google Scholar 

  • Cormen, T. H., C. E. Leiserson and R. L. Rivest (1990). Introduction to Algorithms, New York: McGraw Hill.

    Google Scholar 

  • Crippen, G. M. (1977). A novel approach to the calculation of conformation: distance geometry. J. Comput. Physiol. 24, 96–107.

    MATH  MathSciNet  Google Scholar 

  • Crippen, G. M. (1981). Distance Geometry and Conformational Calculations, Chichester, England: Wiley.

    MATH  Google Scholar 

  • Crippen, G. M. and T. F. Havel (1988). Distance Geometry and Molecular Conformation, Taunton, Somerset, England: Research Studies Press Ltd.

    MATH  Google Scholar 

  • Dailey, D. P. (1980). Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. Discrete Math. 30, 289–293.

    Article  MATH  MathSciNet  Google Scholar 

  • Dress, A. W. M. and T. F. Havel (1988). Shortest-path problems and molecular conformation. Discrete Appl. Math. 19, 129–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Easthope, P. L. and T. F. Havel (1989). Computational experience with an algorithm for tetrangle inequality bound-smoothing. Bull. Math. Biol. 51, 173–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Havel, T. F., I. D. Kuntz and G. M. Crippen (1983). The theory and practice of distance geometry. Bull. Math. Biol. 45, 665–720.

    Article  MathSciNet  MATH  Google Scholar 

  • Hendrickson, B. A. (1995). The molecule problem: exploiting structure in global optimizations. SIAM J. Optim. 5, 835–857.

    Article  MATH  MathSciNet  Google Scholar 

  • Kumar, N., N. Deo and R. Addanki (1996). Empirical study of a tetrangle inequality bound-smoothing algorithm. Congressus Numerantium 117, 15–31.

    MathSciNet  MATH  Google Scholar 

  • Moré, J. J. and Z. Wu (1997). Global continuation for distance geometry problems. SIAM J. Optim. 7, 814–836.

    Article  MathSciNet  MATH  Google Scholar 

  • Rajan, K., N. Deo and N. Kumar (1997). Parallel tetrangle inequality bound-smoothing on a cluster of workstations. Congressus Numerantium 124, 211–220.

    MathSciNet  MATH  Google Scholar 

  • Saxe, J. B. (1979). Embeddability of weighted graphs in k-space is strongly NP-hard, in Proceedings of the 17th Allerton Conference in Communications, Control and Computing, pp. 480–489.

  • Searls, D. B. (1998). Grand challenges in computational biology, in Computational Methods in Molecular Biology, S. L. Salzberg, D. B. Searls and S. Kasif (Eds), Elsevier, pp. 3–10.

  • Shao, W., L. F. Jerva, J. West, E. Lolis and B. I. Schweitzer (1998). Solution structure of murine macrophage inflammatory protein-2. Biochemistry 37, 8303–8313.

    Article  Google Scholar 

  • Stinson, D. R. (1996). Packings, in THE CRC Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Eds), Boca Raton, FL: CRC Press, pp. 409–413.

    Google Scholar 

  • Teirlinck, L. (1992). Large sets of disjoint designs and related structures, in Contemporary Design Theory: a collection of surveys, J. H. Dinitz and D. R. Stinson (Eds), JohnWiley & Sons, pp. 561–592.

  • Tucker, A. (1984). Applied Combinatorics, New York: John Wiley & Sons.

    MATH  Google Scholar 

  • Weber, P. L., R. Morrison and D. Hare (1988). Determining stereo-specific 1 H nuclear magnetic resonance assignments from distance geometry calculations. J. Mol. Biol. 204, 483–487.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Rajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajan, K., Deo, N. Computational experience with a parallel algorithm for tetrangle inequality bound smoothing. Bull. Math. Biol. 61, 987–1008 (1999). https://doi.org/10.1006/bulm.1999.0123

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0123

Keywords

Navigation