Skip to main content
Log in

Stick-slip dynamics and recent insights into shear banding in metallic glasses

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Despite extensive research, the understanding of the fundamental processes governing yielding and plastic flow in metallic glasses remains poor. This is due to experimental difficulties in capturing plastic flow as a result of a strong localization in space and time by the formation of shear bands at low homologous temperatures. Unveiling the mechanism of shear banding is hence key to developing a deeper understanding of plastic deformation in metallic glasses. We will compile recent progress in studying the dynamics of shear-band propagation from serrated flow curves. We will also take a perspective gleaned from stick-slip theory and show how the insights gained can be deployed to explain fundamental questions concerning the origin, mechanism, and characteristics of flow localization in metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. W. Klement, R.H. Willens, and P. Duwez: Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869 (1960).

    CAS  Google Scholar 

  2. M.F. Ashby and A.L. Greer: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).

    Article  CAS  Google Scholar 

  3. J.F. Löffler: Bulk metallic glasses. Intermetallics 11, 529 (2003).

    Article  CAS  Google Scholar 

  4. M. Telford: The case for bulk metallic glass. Mater. Today 7, 36 (2004).

    Article  CAS  Google Scholar 

  5. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  6. M. Chen: Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445 (2008).

    Article  CAS  Google Scholar 

  7. C.A. Pampillo and H.S. Chen: Comprehensive plastic deformation of a bulk metallic glass. Mater. Sci. Eng. 13, 181 (1974).

    Article  CAS  Google Scholar 

  8. J.J. Gilman: Flow via dislocations in ideal glasses. J. Appl. Phys. 44, 675 (1973).

    Article  CAS  Google Scholar 

  9. A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  10. F. Spaepen and D. Turnbull: A mechanism for the flow and fracture of metallic glasses. Scr. Metall. 8, 563 (1974).

    Article  CAS  Google Scholar 

  11. F. Spaepen: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

  12. M.L. Falk and J.S. Langer: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 57, 7192 (1998).

    Article  CAS  Google Scholar 

  13. P. Schall, D.A. Weitz, and F. Spaepen: Structural rearrangements that govern flow in colloidal glasses. Science 318, 1895 (2007).

    Article  CAS  Google Scholar 

  14. N.A. Spenley, X.F. Yuan, and M.E. Cates: Nonmonotonic constitutive laws and the formation of shear-banded flows. J. Phys. II 6, 551 (1996).

    CAS  Google Scholar 

  15. P. Schall and M. van Hecke: Shear bands in matter with granularity. Annu. Rev. Fluid Mech. 42, 67 (2010).

    Article  Google Scholar 

  16. G. Ovarlez, S. Rodts, X. Chateau, and P. Coussot: Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol. Acta 48, 831 (2009).

    Article  CAS  Google Scholar 

  17. S. Manneville: Recent experimental probes of shear banding. Rheol. Acta. 47, 301 (2008).

    Article  CAS  Google Scholar 

  18. T. Masumoto and R. Maddin: The mechanical properties of palladium 20 a/o silicon alloy quenched from the liquid state. Acta Metall. 19, 725 (1971).

    Article  CAS  Google Scholar 

  19. H. Neuhäuser: Rate of shear band formation in metallic glasses. Scr. Metall. 12, 471 (1978).

    Article  Google Scholar 

  20. B. Yang, M.L. Morrison, P.K. Liaw, R.A. Buchanan, G. Wang, C.T. Liu, and M. Denda: Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86, 141904 (2005).

    Article  CAS  Google Scholar 

  21. S.X. Song, H. Bei, J. Wadsworth, and T.G. Nieh: Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics 16, 813 (2008).

    Article  CAS  Google Scholar 

  22. W.J. Wright, M.W. Samale, T.C. Hufnagel, M.M. LeBlanc, and J.N. Florando: Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass. Acta Mater. 57, 4639 (2009).

    Article  CAS  Google Scholar 

  23. A. Vinogradov: On shear band velocity and the detectability of acoustic emission in metallic glasses. Scr. Mater. 63, 89 (2010).

    Article  CAS  Google Scholar 

  24. J.J. Lewandowski and A.L. Greer: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).

    Article  CAS  Google Scholar 

  25. W.J. Wright, R. Saha, and W.D. Nix: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans., JIM 42, 642 (2001).

    Article  CAS  Google Scholar 

  26. C. Schuh, T.G. Nieh, and Y. Kawamura: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).

    Article  CAS  Google Scholar 

  27. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  28. H. Kimura and T. Masumoto: Deformation and fracture of an amorphous Pd–Cu–Si alloy in V-notch bending tests. I: Model mechanics of inhomogeneous plastic flow in non-strain hardening solid. Acta Metall. 28, 1663 (1980).

    Article  CAS  Google Scholar 

  29. H. Kimura and T. Masumoto: A model of the mechanics of shear-crack propagation in tearing for amorphous metals. I. Critical shear stress for inhomogeneous flow. Philos. Mag. 44, 1005 (1981).

    Article  CAS  Google Scholar 

  30. H. Kimura and T. Masumoto: A model of the mechanics of shear-crack propagation in tearing for amorphous metals. II. Kinetics of inhomogeneous flow. Philos. Mag. 44, 1021 (1981).

    Article  CAS  Google Scholar 

  31. H. Kimura and T. Masumoto: A model of the mechanics of serrated flow in an amorphous alloy. Acta Metall. 31, 231 (1983).

    Article  Google Scholar 

  32. Y.Q. Cheng, Z. Han, Y. Li, and E. Ma: Cold versus hot shear banding in bulk metallic glass. Phys. Rev. B 80, 134115 (2009).

    Article  CAS  Google Scholar 

  33. F.H. Dalla Torre, D. Klaumünzer, R. Maaß, and J.F. Löffler: Stick-slip behavior of serrated flow during inhomogeneous deformation of bulk metallic glasses. Acta Mater. 58, 3742 (2010).

    Article  CAS  Google Scholar 

  34. G. Wang, K.C. Chan, L. Xia, P. Yu, J. Shen, and W.H. Wang: Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater. 57, 6146 (2009).

    Article  CAS  Google Scholar 

  35. B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao, and W.H. Wang: Plasticity of ductile metallic glasses: A self-organized critical state. Phys. Rev. Lett. 105, 035501 (2010).

    Article  CAS  Google Scholar 

  36. B.N.J. Persson: Sliding friction. Surf. Sci. Rep. 33, 83 (1999).

    Article  CAS  Google Scholar 

  37. Z. Han and Y. Li: Cooperative shear and catastrophic fracture of bulk metallic glasses from a shear-band instability perspective. J. Mater. Res. 24, 3620 (2009).

    Article  CAS  Google Scholar 

  38. Z. Han, W.F. Wu, Y. Li, Y.J. Wei, and H.J. Gao: An instability index of shear band for plasticity in metallic glasses. Acta Mater. 57, 1367 (2009).

    Article  CAS  Google Scholar 

  39. W.J. Wright, R.B. Schwarz, and W.D. Nix: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng., A 319-, 229 (2001).

    Article  Google Scholar 

  40. S.X. Song and T.G. Nieh: Flow serration and shear-band viscosity during inhomogeneous deformation of a Zr-based bulk metallic glass. Intermetallics 17, 762 (2009).

    Article  CAS  Google Scholar 

  41. H.M. Chen, J.C. Huang, S.X. Song, T.G. Nieh, and J.S.C. Jang: Flow serration and shear-band propagation in bulk metallic glasses. Appl. Phys. Lett. 94, 141914 (2009).

    Article  CAS  Google Scholar 

  42. C.Q. Chen, Y.T. Pei, and J.T.M. De Hosson: Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater. 58, 189 (2010).

    Article  CAS  Google Scholar 

  43. D. Klaumünzer, R. Maass, F.H. Dalla Torre, and J.F. Löffler: Temperature-dependent shear band dynamics in a Zr-based bulk metallic glass. Appl. Phys. Lett. 96, 061901 (2010).

    Article  CAS  Google Scholar 

  44. Z.H. Han, L. He, M.B. Zhong, and Y.L. Hou: Dual specimen-size dependences of plastic deformation behavior of a traditional Zr-based bulk metallic glass in compression. Mater. Sci. Eng., A 513-, 344 (2009).

    Article  CAS  Google Scholar 

  45. R. Maaß, D. Klaumünzer, and J.F. Löffler: Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater. 59, 3205 (2011).

    Article  CAS  Google Scholar 

  46. A. Bharathula, S-W. Lee, W.J. Wright, and K.M. Flores: Compression testing of metallic glass at small length scales: Effects on deformation mode and stability. Acta Mater. 58, 5789 (2010).

    Article  CAS  Google Scholar 

  47. D.B. Miracle, A. Concustell, Y. Zhang, A.R. Yavari, and A.L. Greer: Shear bands in metallic glasses: Size effects on thermal profiles. Acta Mater. 59, 2831 (2011).

    Article  CAS  Google Scholar 

  48. Y.H. Liu, C.T. Liu, A. Gali, A. Inoue, and M.W. Chen: Evolution of shear bands and its correlation with mechanical response of a ductile Zr55Pd10Cu20Ni5Al10 bulk metallic glass. Intermetallics 18, 1455 (2010).

    Article  CAS  Google Scholar 

  49. R.D. Conner, W.L. Johnson, N.E. Paton, and W.D. Nix: Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904 (2003).

    Article  CAS  Google Scholar 

  50. S.X. Song, X.L. Wang, and T.G. Nieh: Capturing shear band propagation in a Zr-based metallic glass using a high speed camera. Scr. Mater. 62, 847 (2010).

    Article  CAS  Google Scholar 

  51. K. Georgarakis, M. Aljerf, Y. Li, A. LeMoulec, F. Charlot, A.R. Yavari, K. Chornokhvostenko, E. Tabachnikova, G.A. Evangelakis, D.B. Miracle, A.L. Greer, and T. Zhang: Shear band melting and serrated flow in metallic glasses. Appl. Phys. Lett. 93, 031907 (2008).

    Article  CAS  Google Scholar 

  52. S.G. Mayr: Activation energy of shear transformation zones: A key for understanding rheology of glasses and liquids. Phys. Rev. Lett. 97, 195501 (2006).

    Article  CAS  Google Scholar 

  53. D. Rodney and C. Schuh: Distribution of thermally activated plastic events in a flowing glass. Phys. Rev. Lett. 102, 235503 (2009).

    Article  CAS  Google Scholar 

  54. J.S. Langer: Shear-transformation-zone theory of plastic deformation near the glass transition. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 77, 021502 (2008).

    Article  CAS  Google Scholar 

  55. E.G. Daub and J.M. Carlson: Stick-slip instabilities and shear strain localization in amorphous materials. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 80, 066113 (2009).

    Article  CAS  Google Scholar 

  56. E.R. Homer, D. Rodney, and C.A. Schuh: Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal. Phys. Rev. B 81, 064204 (2010).

    Article  CAS  Google Scholar 

  57. Y. Wu, G.L. Chen, X.D. Hui, C.T. Liu, Y. Lin, X.C. Shang, and Z.P. Lu: A quantitative link between microplastic instability and macroscopic deformation behaviors in metallic glasses. J. Appl. Phys. 106, 083512 (2009).

    Article  CAS  Google Scholar 

  58. F.H. Stillinger: A topographic view of supercooled liquids and glass formation. Science 267, 1935 (1995).

    Article  CAS  Google Scholar 

  59. W.L. Johnson and K. Samwer: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    Article  CAS  Google Scholar 

  60. E.J. Kramer: The growth of shear bands in polystyrene. J. Polym. Sci., Polym. Phys. Ed. 13, 509 (1975).

    Article  CAS  Google Scholar 

  61. S.P. Timothy: The structure of adiabatic shear bands in metals: A critical review. Acta Metall. 35, 301 (1987).

    Article  CAS  Google Scholar 

  62. J.P. Poirier: Shear localization and shear instability in materials in the ductile field. J. Struct. Geol. 2, 135 (1980).

    Article  Google Scholar 

  63. Y. Zhang, N.A. Stelmashenko, Z.H. Barber, W.H. Wang, J.J. Lewandowski, and A.L. Greer: Local temperature rises during mechanical testing of metallic glasses. J. Mater. Res. 22, 419 (2007).

    Article  CAS  Google Scholar 

  64. F. Spaepen: Metallic glasses: Must shear bands be hot? Nat. Mater. 5, 7 (2006).

    Article  CAS  Google Scholar 

  65. H.S. Chen: Glassy metals. Rep. Prog. Phys. 43, 353 (1980).

    Article  Google Scholar 

  66. B. Yang, C.T. Liu, and T.G. Nieh: Unified equation for the strength of bulk metallic glasses. Appl. Phys. Lett. 88, 221911 (2006).

    Article  CAS  Google Scholar 

  67. P. Guan, M.W. Chen, and T. Egami: Stress-temperature scaling for steady-state flow in metallic glasses. Phys. Rev. Lett. 104, 205701 (2010).

    Article  CAS  Google Scholar 

  68. A. Dubach, F.H. Dalla Torre, and J.F. Löffler: Constitutive model for inhomogeneous flow in bulk metallic glasses. Acta Mater. 57, 881 (2009).

    Article  CAS  Google Scholar 

  69. C.A. Schuh, A.C. Lund, and T.G. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).

    Article  CAS  Google Scholar 

  70. A. Dubach, F.H. Dalla Torre, and J.F. Löffler: Deformation kinetics in Zr-based bulk metallic glasses and its dependence on temperature and strain-rate sensitivity. Philos. Mag. Lett. 87, 695 (2007).

    Article  CAS  Google Scholar 

  71. R.G. Cain, N.W. Page, and S. Biggs: Microscopic and macroscopic aspects of stick-slip motion in granular shear. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 64, 016413 (2001).

    Article  CAS  Google Scholar 

  72. R. Maaß, D. Klaumünzer, E.I. Preiß, P.M. Derlet, and J.F. Löffler: Plasticity of a single shear band in a bulk Zr-based metallic glass at cryogenic temperatures. (2011, under review).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Klaumünzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaumünzer, D., Maaß, R. & Löffler, J.F. Stick-slip dynamics and recent insights into shear banding in metallic glasses. Journal of Materials Research 26, 1453–1463 (2011). https://doi.org/10.1557/jmr.2011.178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.178

Navigation