Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T21:22:23.461Z Has data issue: false hasContentIssue false

Interlaboratory CEC and Exchangeable Cation Study of Bentonite Buffer Materials: II. Alternative Methods

Published online by Cambridge University Press:  01 January 2024

Reiner Dohrmann*
Affiliation:
Landesamt für Bergbau, Energie und Geologie (LBEG), Stilleweg 2, D-30655 Hannover, Germany Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, D-30655 Hannover, Germany
Dieter Genske
Affiliation:
S&B Industrial Minerals GmbH, Schmielenfeldstrasse 78, D-45772 Marl, Germany
Ola Karnland
Affiliation:
Clay Technology AB, IDEON Research Center, SE-22370 Lund, Sweden
Stephan Kaufhold
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, D-30655 Hannover, Germany
Leena Kiviranta
Affiliation:
B+Tech Oy, Laulukuja 4, FI-00420 Helsinki, Finland
Siv Olsson
Affiliation:
Clay Technology AB, IDEON Research Center, SE-22370 Lund, Sweden
Michael Plötze
Affiliation:
ETH Zürich, Institute for Geotechnical Engineering, ClayLab, Schafmattstrasse 6, CH-8093 Zurich, Switzerland
Torbjörn Sandén
Affiliation:
Clay Technology AB, IDEON Research Center, SE-22370 Lund, Sweden
Patrik Sellin
Affiliation:
Swedish Nuclear Fuel and Waste Management Co (SKB), Pl 300, SE-57295 Figeholm, Sweden
Daniel Svensson
Affiliation:
Swedish Nuclear Fuel and Waste Management Co (SKB), Box 929, SE-57229, Oskarshamn, Sweden
Martin Valter
Affiliation:
ETH Zürich, Institute for Geotechnical Engineering, ClayLab, Schafmattstrasse 6, CH-8093 Zurich, Switzerland
*
*E-mail address of corresponding author: reiner.dohrmann@lbeg.niedersachsen.de

Abstract

Bentonites are candidate materials for encapsulation of radioactive waste. The cation exchange capacity (CEC) has proven to be one of the most sensitive parameters for detecting changes in mineral properties in bentonite-alteration experiments. An interlaboratory study of CECs and exchangeable cations for three reference bentonite buffer materials that were used in the Alternative Buffer Material test (ABM) project in Äspö, Sweden, was conducted to create a suitable database. The present study focused on CEC accuracy and compared CEC methods where care was taken to prevent dissolution of soluble minerals such as calcite and gypsum. The overall quality of the CEC and exchangeable cation values measured using non-Cu-trien CEC methods were good, with CECs of 74–91±0.5–3.3 meq/100 g and exchangeable cation values of 22–61±1.2–3.9 meq/100 g Na+, 7–23±0.8–1.5 meq/100 g Mg2+, and 19–39±0.8–1.6 meq/ 100 g Ca2+. The precision was comparable to the standard Cu-trien method even for exchangeable Ca2+, although the laboratories used different solution/solid ratios and reaction-time parameters for Cu-trien which affect carbonate dissolution. The MX80 and Dep.CAN bentonite exchangeable Ca2+ values were more accurate than standard-Cu-trien values. Using the optimized methods of this study, MX80 and Dep.CAN exchangeable Ca2+ values averaged 20.2±1.6 and 38.8±1.4 meq/100 g which amounts to ~70% of the inflated Cu-trien values. A more complex analysis of the CEC data using different methods, anion analyses, and mineralogical analysis is necessary to obtain plausible and accurate CEC values. Even with a more complicated analytical procedure, the CEC and exchangeable cation values were still not accurate enough because of excess anions. Chloride, sulfate, and dolomite might have increased the exchangeable Na+, Mg2+, and Ca2+ values.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bache, B.W., 1976 The measurement of cation exchange capacity of soils Journal of the Science of Food and Agriculture 27 273280.CrossRefGoogle Scholar
Beneke, K. and Lagaly, G., 2005.Jakob Maarten van Bemmelen (November 3, 1830 Amelo - March 13, 1911 Leiden) and the history of the theory of adsorption from solutionGoogle Scholar
Bradbury, M.H. and Baeyens, B., 1998 A physico-chemical characterisation and geochemical modelling approach for determining porewater chemistries in argillaceous rocks Geochimica et Cosmochimica Acta 62 783795.CrossRefGoogle Scholar
Dohrmann, R., 2006 Cation Exchange Capacity Methodology I: An Efficient Model for the Detection of Incorrect Cation Exchange Capacity and Exchangeable Cation Results Applied Clay Science 34 3137.CrossRefGoogle Scholar
Dohrmann, R., 2006 Cation Exchange Capacity Methodology III: Correct exchangeable calcium determination of calcareous clays using a new silver-thiourea method Applied Clay Science 34 4757.CrossRefGoogle Scholar
Dohrmann, R. and Kaufhold, S., 2009 Three new, quick CEC methods for determining the amounts of exchangeable calcium cations in calcareous clays Clays and Clay Minerals 57 338352.CrossRefGoogle Scholar
Dohrmann, R. and Kaufhold, S., 2010 Determination of exchangeable calcium of calcareous and gypsiferous bentonites Clays and Clay Minerals 58 7988.CrossRefGoogle Scholar
Dohrmann, R. Genske, D. Karnland, O. Kaufhold, S. Kiviranta, L. Olsson, S. Plötze, M. Sandén, T. Sellin, P. Svensson, D. and Valter, M., 2012 Interlaboratory CEC and exchangeable cation study of bentonite buffer materials. I. Cu(II)-triethylenetetramine method Clays and Clay Minerals 60 162175.CrossRefGoogle Scholar
Echle, W., 1978 The transformations sepiolite D ⇌ loughlinite: experiments and field observations Neues Jahrbuch für Mineralogie Abhandlungen 133 303321.Google Scholar
Eng, A. Nilsson, U. and Svensson, D., 2007 ÄspöHard Rock Laboratory Alternative Buffer Material, Installation report, IPR-07-15 67.Google Scholar
Graf von Reichenbach, H., 1966 Anomalien des Kationenaustausches bei Vermiculiten Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 113 203213.CrossRefGoogle Scholar
Grim, R.E., 1962 Applied Clay Mineralogy New York McGraw Hill 422.Google Scholar
Jackson, M.L., 1963 Interlayering of expansible layer silicates in soils by chemical weathering Clays and Clay Minerals 11 2946.CrossRefGoogle Scholar
Johnson, S.W., 1859 On some points of agricultural science American Journal of Science and Arts, Series 2 28 7185.Google Scholar
Kaufhold, S. and Dohrmann, R., 2010 Effect of extensive drying on the cation exchange capacity of bentonites Clay Minerals 45 441448.CrossRefGoogle Scholar
Kaufhold, S. and Dohrmann, R., 2010 Stability of bentonites in salt solutions II Potassium chloride solution - Initial step of illitization? Applied Clay Science 49 98107.Google Scholar
McBride, M.B., 1979 An interpretation of cation selectivity variations in M+-M+ exchange on clays Clays and Clay Minerals 27 417422.CrossRefGoogle Scholar
Mehlich, A., 1948 Determination of cation- and anionexchange properties of soils Soil Science 66 429445.CrossRefGoogle Scholar
Meier, L.P. and Kahr, G., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 47 386388.CrossRefGoogle Scholar
Muurinen, A., 2010 Studies on the chemical conditions and microstructure in package 1 of alternative buffer materials project (ABM) in Äspö. Posiva WR 2010-11 Olkiluoto, Finland Posiva Oy 44.Google Scholar
Olsson, S. and Karnland, O., 2011 Mineralogical and chemical characteristics of the bentonite in the A2 test parcel of the LOT field experiments at ÄspöHRL, Sweden Physics and Chemistry of the Earth 36 15451553.CrossRefGoogle Scholar
Okazaki, R. Smith, H.W. and Moodie, C.D., 1962 Development of a cation-exchange capacity procedure with few inherent errors Soil Science 93 343349.CrossRefGoogle Scholar
Papanicolaou, E.P. and Overstreet, R., 1969 The determination of cation exchange capacity over a wide range of pH using various index cations Zeitschriftfür Pflanzenernährung und Bodenkunde 123 205212.CrossRefGoogle Scholar
Riehm, H. Ulrich, B. and Ulrich, M., 1954 Schnelle Bestimmung der Kationen austausch kapazität Landwirtschaftliche Forschung 6 95114.Google Scholar
Sawhney, B.L., 1972 Selective sorption and fixation of cations by clay minerals: A review Clays and Clay Minerals 20 93100.CrossRefGoogle Scholar
Schwertmann, U., 1966 Das Verhalten von Vermiculiten gegenüber Kalium, Aluminium und anderen Kationen II Chemische Untersuchungen. Zeitschrift für Pflanzenernährung und Bodenkunde 115 200209.CrossRefGoogle Scholar
SKB, 2007 RD&D Programme 2007. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste TR-07-12 Stockholm, Sweden Swedish Nuclear Fuel and Waste Management Company (SKB).Google Scholar
Thomas, G.W., 1977 Historical developments in soil chemistry: Ion exchange Soil Science Society of America Journal 41 230238.CrossRefGoogle Scholar
Van Bemmelen, J.M., 1888 Über die Absorptionsverbindungen und das Absorptionsvermögen der Ackererde Die Landwirtschaftlichen Versuchsstationen 35 69136.Google Scholar
Walker, G.F., 1959 Diffusion of exchangeable cations in vermiculite Nature 184 13921393.CrossRefGoogle Scholar
Weiss, A. Mehler, A. and Hofmann, U., 1956 Kationenaustausch und innerkristallines Quellungsvermögen bei den Mineralien der Glimmergruppe Zeitschrift für Naturforschung 11b 435438.CrossRefGoogle Scholar
Weiss, A., 1958 Über das Kationenaustauschvermögen der Tonminerale. I. Vergleich der Untersuchungsmethoden Zeitschrift für Anorganische und Allgemeine Chemie 297 232255.CrossRefGoogle Scholar
Weiss, A., 1958 Über das Kationenaustauschvermögen der Tonminerale. II. Vergleich der Untersuchungsmethoden Zeitschrift für Anorganische und Allgemeine Chemie 297 257286.CrossRefGoogle Scholar
Weiss, A., 1958 Über den äquimolaren Kationenaustausch bei niedrig geladenen Ionenaustauschern Kolloid Zeitschrift 158 2228.CrossRefGoogle Scholar
Weiss, A., 1959 Über das Kationenaustauschvermögen der Tonminerale. III. Der Kationenaustausch bei Kaolinit Zeitschrift für Anorganische und Allgemeine Chemie 299 92120.CrossRefGoogle Scholar