
 

A. Beam divergence contribution terms in presence of mirrors 

 

Using a Gaussian approximation, the reflection probability of an X-ray beam incident at a 

glancing angle θi on optically-bent parabolic mirror is derived within the geometrical optics 

approximation (Susini, 1995). Optically-bent mirror means that the source sits on the mirror focal 

point (first mirror) and that the nearly parallel incident beam is focused at the mirror focal point 

(second mirror) where the sample is located, as schematically shown in the article’s Fig. 1. The 

profile of real mirrors is, however, always affected by geometrical errors due to gravity, thermal 

deformation, and/or incorrect bending moments. Referring to the optics setting described in Fig. 

1, expressions for the FWHM beam angular divergence pτΔ  and fτΔ , which take explicitly into 

account the influence of the above mentioned source of errors are derived. 

 Let us consider the parabola Π1 in Fig. A with origin in O in the Cartesian reference 

system OXYZ and be the X-ray source S placed in its focal point. A mirror M1 of length L1 with 

the asymmetric profile Π1 placed at a distance p1 from the source ( SPp 11 = , p1>>L1, P1(X0,Z0)  

mirror pole) would satisfy the ideal optical conditions for a collimating mirror. Let Π2 be a 

second parabola in a new reference system oxyz with origin in the pole of the mirror P1 defining 

the shape of mirror M1 when a bending, symmetric with respect to its pole, is applied. In real 

cases, and the MS beamline is an example, a symmetric bending Π2-type often replaces an 

asymmetric bending Π1-type to reduce the complexity of the mirror bending mechanisms. 

Whether the applied bending is symmetric or asymmetric, for manufacturing and metrology 

purposes it is always more convenient to define the parabolas in the oxyz reference system with 

origin in the mirror pole and expand the profile in a McLaurin series (Noda et al., 1974). In fact, 

the coefficients of the series can be easily related to the various optical aberration terms (Howells, 

1994, p. 381), due to the differences near the pole between Π1 and Π2. Similarly, one would 

define a second pair of parabolas Π3 and Π4 to describe geometrical aberrations of the second 

mirror M2 of length L2 and pole P2 placed at a distance p2 (L2<<p2) from the focal point of the Π3 

parabola, where the sample is placed.  For most applications in grazing incidence X-ray optics, 

the main source of error comes from coma and spherical aberrations (Susini, 1995) and a forth-

degree polynomial expansion is enough to describe with good approximation hard x-ray mirrors, 

for which higher order aberrations are negligible. Within this approximation, the ideal optical 

mirror profile (Π1 or Π3) in the mirror coordinate system is: 
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where the Maclaurin-expansion coefficients αi,0, β i and γ i, can be analytically expressed, for 

any shape and, for a parabolic shape are given by1
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Here: x is the coordinate that locates a generic point along the ith mirror (i=1 for M1 and  i=2 

for M2) with respect to the local reference system {xyz}i with origin in the mirror pole Pi(X0,Y0); 

p1 is the source to first-mirror pole distance, p2 is the sample to second-mirror pole distance and θi 

is the mirror grazing incidence angle (less than the critical angle of total reflection θc) calculated 

at the Mi pole. The variation of the radius of curvature along the mirror is given by (Susini, 

1995): 
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Therefore, the mean optical curvature radius (calculated in Pi) is related to αi,0
  by the 

expression 0,2/1 ioR α= .  

Given a symmetric bending, the mirror profile Π2 (or Π4) should, therefore, be as closest as 

possible to the one of Π1 (or Π3). However, at very large radius of curvatures, parasitic effects 

due to gravity and thermal deformation generally significantly influence the mirror curvature. 

Therefore, taking into account all the above contributions, the actual mirror figure is given by  
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where:  zi,b(x), zi,g(x) and zi,t(x) are the mirror profile contributions due to a symmetric bending, 

gravity sag2 and thermal deformation, respectively, with the latter approximated to the first-order 

                                                 
1  The α and β symbols employed here to represent the series expansion coefficients are not at all correlated with those used in 
Sections 1 and 2.  Here, also, we made the choice to maintain Susini’s terminology judging that the context where these symbols were 
used was different enough for not inducing the reader into confusion. 



of θi (Susini, 1995); the constant term expresses the maximum total deviation (in Pi) due to the 

sum of all the above-mentioned physical effects; ρi is the mirror density, Yi the Young modulus, 

Ti  the mirror thickness, ai the thermal expansion coefficient, κi the thermal conductivity, Wi  the 

mirror width, Ci the cooling geometry constant, hi,z  the vertical half height of the photon beam, 

Pabs  the total power absorbed in the mirror and g the gravity acceleration; αi,b can be modified by 

the user with a suitable bending of the mirror in order to maximize its optical performances and  

si is a sign function (+ for M1 and – for M2) which takes into account that M2 is up side down with 

respect to M1.  

A1. Beam divergence distribution function width after reflection by the collimating 
mirror M1

For mirror M1, the difference between the and  profiles leads to orientation 

errors of the normal to the mirror surface in any given point x. This slope error distribution along 

the mirror due to the incorrect profile or, equivalently, to the incorrect orientation of the normal to 

the mirror surface, is given by: 
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The residual FWHM beam angular divergence pτΔ  after reflection by the first collimating 

mirror caused by the wrong profile will be, then, given by the maximum angular deviation from 

the ideal value of the normal to the mirror surface, i.e. by the value of ( )max
'
1 xxz =Δ 3. However, 
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the latter justified by a 4-point bending holding of the mirror, one easily obtains the expression in (A4). 
3 Note that the maximum angular deviation from the ideal value of the normal to the mirror surface directly gives the FWHM beam 

angular divergence pτΔ  (and analogously fτΔ ). The corresponding width (and analogously  ) of the beam 

divergence probability distribution function that appears in equation (3) of the main article is, then, obtained by simply dividing the 

FWHM by 

'
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'
fτΔ

22 ln . 



depending on the applied bending, the global maximum of the  function can be 

reached on the mirror or outside it.  When 
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the mirror pole. Therefore, we write:  
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We observe that, when the gravity sag can be neglected, the equivalence ⎟
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Lz  describes differences between the real and ideal 

radius of curvature, whereas the two additional terms in and  describe aperture effects and 

spherical aberrations (Susini, 1995).  
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So far, we have been considering the source as a point-like source.  However, using purely 

geometrical considerations, the finite source dimensions S can be taken into account and the (A6) 

generalized as follows (Howells, 1994; Susini, 1995):  
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The expression above is directly obtained from Susini’s equation (9) (Susini, 1995) simply 

dividing the spot size by the image distance q (in order to calculate the maximum angular 

divergence) in the limit of q→∞ (for a parabola).  

Defining 1 1 1,b ,c 0α α= , one can evaluate the bending degree c1 (calculated with respect to the 

ideal optical curvature) necessary to compensate as much as possible gravity sag, thermal 

expansion and other aberrations. For negligible gravity and thermal effects, the optimal pτΔ  

                                                 
4 When the third-order term of the mirror profile induced by the thermal expansion cannot be neglected, the (A6) needs to be further 

generalized. However, since this third-order contribution is proportional to  (Susini, 1995) it can be usually neglected.  
3
iθ



value, at the first order in x, would, then, require 11 ≅c . When gravity and thermal effects are not 

negligible, for a collimating mirror oriented as in the article’s Fig.1, one would instead expect that 

c1<1 for an optimal bending, and c1>1 for an overbending. For such a mirror, in fact, gravity and 

thermal effects would already cause a mirror bending (concave mirror surface). The optimal 

condition 1,b ,1 0α α=  would, therefore, be already reached for c1<1 and definitely past for c1>1 

corresponding to the symmetric profile above the asymmetric one. The optimum c1 values for 10, 

13 and 25 KeV have been estimated and found equal to 0.8, 0.73 and 0.5, respectively. Note that 

the minimum IRF FWHM value at different energies is reached at different c1 values. This is 

related to the fact that the optical radius of curvature increases as a function of the energy. On the 

other hand, the gravity radius of curvature is always the same. Thus, starting from the mirror bent 

by gravity, in order to reproduce the optical radius of curvature, one needs to apply smaller 

bending moments at higher energies. The theoretical optimum value of pτΔ  for a collimating 

mirror like the one at the SLS MS beamline is the same for all photon energies and equal to 15 

μrad. As we said, this optimum value corresponds to different c1,optimum values since it is a 

function of the photon energy.   

A2. Beam divergence distribution function widths after reflection by the refocusing 
mirror M2

An analogous derivation can be made for the second refocusing mirror described in the 

article’s Fig. 1. Since a nearly parallel beam impinges on M2, the evaluation of the FWHM of the 

beam divergence fτΔ  after reflection by M2 only requires the differentiation of (A4) with respect 

to x: 
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Similarly to what was done for the first mirror, the value of  in x(max) would give the 

maximum variation of the normal to the mirror surface due to its curvature and, therefore, a good 

approximation of the FWHM beam angular divergence 

'
,2 totz

fτΔ  after reflection by the second 

refocusing mirror in the case of a bent second mirror3:  
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where the factor of 2 takes into account that the normal variation has opposite sign in the 

mirror extremes and this doubles the divergence. Again, the first value applies when the maxx  

falls within the interval ⎟
⎠
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,0 2L

and the second when it falls outside it.  

Defining, as done for M1, 2 2 2,b ,c 0α α= , the parameter c2 gives the bending degree of M2, 

whereas the condition ⎟
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the optimal choice of  in order to reduce residual divergences due to gravity sag and thermal 

deformation in a flat mirror. These effects cannot, in this case, be completely compensated by a 

parabolic bending and the parameter  can be referred to as the gravity and thermal curvature.  
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The condition for the minimum value of fτΔ  when M2 is in a flat configuration is reached 
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If the thermal deformation induced curvature is negligible ( )0,2 ≈tα , the solution of (A10) 

gives 
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satisfied for 
4
1

2 =c . The value 
4
1

would, then, be the optimal choice of c2 to reduce residual 

divergences due to gravity sag in a flat mirror.5 For bent configurations one should expect 12 ≅c  

in ideal situation and values >1 (<1) indicating overbending (underbending). The two coefficients 

c1 and c2 introduced here are the only free parameters of the model, all the other quantities being 

experimentally measured.   

                                                 
5 Flat configurations of the first mirror can be modeled in the same way. 



 

 

 

 

Figure A Symmetric versus asymmetric bending in parabolic mirrors. 
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B. Summary of the full pattern FullProf fitting parameters 
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Table B Full pattern FullProf fitting parameters U, V, W and X, Y for all experimental data sets discussed in the article.  The U, 

W and W parameters were derived according to equation (5) (see Section 7.4, 3rd paragraph) and kept fixed (or only slightly refined) 

during the FullProf refinements, whereas the X and Y parameters were left free to vary. It should be noted that, according to equation 

(5), the U and V parameters are the same for the bent-bent to the bent-flat optical configurations.  

 


