Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dissipative quantum reservoir for microwave light using a mechanical oscillator

Abstract

Engineered dissipation can be used for quantum state preparation. This is achieved with a suitably engineered coupling to a dissipative cold reservoir usually formed by an electromagnetic mode. In the field of cavity electro- and optomechanics, the electromagnetic cavity naturally serves as a cold reservoir for the mechanical mode. Here, we realize the opposite scenario and engineer a mechanical oscillator cooled close to its ground state into a cold dissipative reservoir for microwave photons in a superconducting circuit. By tuning the coupling to this dissipative mechanical reservoir, we demonstrate dynamical backaction control of the microwave field, leading to stimulated emission and maser action. Moreover, the reservoir can function as a useful quantum resource, allowing the implementation of a near-quantum-limited phase-preserving microwave amplifier. Such engineered mechanical dissipation extends the toolbox of quantum manipulation techniques of the microwave field and constitutes a new ingredient for optomechanical protocols.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Realization of a cold, dissipative reservoir for microwave light in circuit optomechanics.
Figure 2: Device, experimental setup, and characterization of the electromechanical circuit.
Figure 3: Dynamical backaction on the microwave mode using an engineered mechanical reservoir.
Figure 4: Amplified vacuum fluctuations and parametric instability of the microwave mode (masing).
Figure 5: Near-quantum-limited phase-preserving amplification.

Similar content being viewed by others

References

  1. Caldeira, A. O. & Leggett, A. J. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981).

    Article  ADS  Google Scholar 

  2. Poyatos, J. F., Cirac, J. I. & Zoller, P. Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728–4731 (1996).

    Article  ADS  Google Scholar 

  3. Krauter, H. et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011).

    Article  ADS  Google Scholar 

  4. Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).

    Article  ADS  Google Scholar 

  5. Lin, Y. et al. Dissipative production of a maximally entangled steady state of two quantum bits. Nature 504, 415–418 (2013).

    Article  ADS  Google Scholar 

  6. Kienzler, D. et al. Quantum harmonic oscillator state synthesis by reservoir engineering. Science 347, 53–56 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  7. Murch, K. W. et al. Cavity-assisted quantum bath engineering. Phys. Rev. Lett. 109, 183602 (2012).

    Article  ADS  Google Scholar 

  8. Shankar, S. et al. Autonomously stabilized entanglement between two superconducting quantum bits. Nature 504, 419–422 (2013).

    Article  ADS  Google Scholar 

  9. Leghtas, Z. et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347, 853–857 (2015).

    Article  ADS  Google Scholar 

  10. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  11. Kronwald, A., Marquardt, F. & Clerk, A. A. Arbitrarily large steady-state bosonic squeezing via dissipation. Phys. Rev. A 88, 063833 (2013).

    Article  ADS  Google Scholar 

  12. Woolley, M. J. & Clerk, A. A. Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir. Phys. Rev. A 89, 063805 (2014).

    Article  ADS  Google Scholar 

  13. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  14. Pirkkalainen, J.-M., Damskägg, E., Brandt, M., Massel, F. & Sillanpää, M. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015).

    Article  ADS  Google Scholar 

  15. Lecocq, F., Clark, J., Simmonds, R., Aumentado, J. & Teufel, J. Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 5, 041037 (2015).

    Google Scholar 

  16. Wang, Y.-D. & Clerk, A. A. Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013).

    Article  ADS  Google Scholar 

  17. Metelmann, A. & Clerk, A. Quantum-limited amplification via reservoir engineering. Phys. Rev. Lett. 112, 133904 (2014).

    Article  ADS  Google Scholar 

  18. Nunnenkamp, A., Sudhir, V., Feofanov, A. K., Roulet, A. & Kippenberg, T. J. quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics. Phys. Rev. Lett. 113, 023604 (2014).

    Article  ADS  Google Scholar 

  19. Kronwald, A., Marquardt, F. & Clerk, A. A. Dissipative optomechanical squeezing of light. New J. Phys. 16, 063058 (2014).

    Article  ADS  Google Scholar 

  20. Metelmann, A. & Clerk, A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015).

    Google Scholar 

  21. Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

    Article  ADS  Google Scholar 

  22. Braginsky, V. & Manukin, A. Measurement of Weak Forces in Physics Experiments (Univ. Chicago Press, 1977).

    Google Scholar 

  23. Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008).

    Article  ADS  Google Scholar 

  24. Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008).

    Article  Google Scholar 

  25. Cicak, K. et al. Low-loss superconducting resonant circuits using vacuum-gap-based microwave components. Appl. Phys. Lett. 96, 093502 (2010).

    Article  ADS  Google Scholar 

  26. Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008).

    Article  ADS  Google Scholar 

  27. Braginsky, V., Manukin, A. & Tikhonov, M. Y. Investigation of dissipative ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 31, 829–831 (1970).

    ADS  Google Scholar 

  28. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  ADS  Google Scholar 

  29. Megrant, A. et al. Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012).

    Article  ADS  Google Scholar 

  30. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  31. Marquardt, F., Harris, J. G. E. & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006).

    Article  ADS  Google Scholar 

  32. Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

    Article  ADS  Google Scholar 

  33. Astafiev, O. et al. Single artificial-atom lasing. Nature 449, 588–590 (2007).

    Article  ADS  Google Scholar 

  34. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  ADS  Google Scholar 

  35. Massel, F. et al. Microwave amplification with nanomechanical resonators. Nature 480, 351–354 (2011).

    Article  ADS  Google Scholar 

  36. Ockeloen-Korppi, C. F. et al. Low-noise amplification and frequency conversion with a multiport microwave optomechanical device. Phys. Rev. X 6, 041024 (2016).

    Google Scholar 

  37. Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

    Article  ADS  Google Scholar 

  38. Eichler, C., Salathe, Y., Mlynek, J., Schmidt, S. & Wallraff, A. Quantum-limited amplification and entanglement in coupled nonlinear resonators. Phys. Rev. Lett. 113, 110502 (2014).

    Article  ADS  Google Scholar 

  39. Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys. 4, 929–931 (2008).

    Article  Google Scholar 

  40. Bloembergen, N. Nonlinear Optics 4th edn (World Scientific, 1996).

    Book  Google Scholar 

  41. Sliwa, K. M. et al. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X 5, 041020 (2015).

    Google Scholar 

  42. Andrews, R. W., Reed, A. P., Cicak, K., Teufel, J. D. & Lehnert, K. W. Quantum-enabled temporal and spectral mode conversion of microwave signals. Nat. Commun. 6, 10021 (2015).

    Article  ADS  Google Scholar 

  43. Grajcar, M. et al. Sisyphus cooling and amplification by a superconducting qubit. Nat. Phys. 4, 612–616 (2008).

    Article  Google Scholar 

  44. Kerckhoff, J. et al. Tunable coupling to a mechanical oscillator circuit using a coherent feedback network. Phys. Rev. X 3, 093502 (2013).

    Google Scholar 

  45. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  46. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. A. Clerk, V. Sudhir and D. Wilson for helpful comments, E. Glushkov for helping out with the measurement setup and C. Javerzac-Galy for general assistance. This work was funded by the SNF, the NCCR Quantum Science and Technology (QSIT), and the European Union Seventh Framework Program through iQUOEMS (grant no. 323924). L.D.T. is supported by Marie Curie ITN cQOM (grant no. 290161). T.J.K. acknowledges financial support from an ERC AdG (QuREM). A.N. holds a University Research Fellowship from the Royal Society and acknowledges support from the Winton Programme for the Physics of Sustainability. All samples were fabricated in the Center of MicroNanoTechnology (CMi) at EPFL.

Author information

Authors and Affiliations

Authors

Contributions

T.J.K. and A.K.F. conceived the idea. L.D.T. fabricated the devices. L.D.T. and N.R.B., under the supervision of A.K.F., performed the measurements. N.R.B. carried out the data analysis. A.N. contributed to the theoretical framework. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to A. K. Feofanov or T. J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tóth, L., Bernier, N., Nunnenkamp, A. et al. A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nature Phys 13, 787–793 (2017). https://doi.org/10.1038/nphys4121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing