Skip to main content
Log in

NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Model-membrane systems composed of liquid-crystalline bicellar phases can be uniaxially oriented with respect to a magnetic field, thereby facilitating structural and dynamics studies of membrane-associated proteins. Here we quantitatively characterize a method that allows the manipulation of the direction of this uniaxial orientation. Bicelles formed from DMPC/DHPC are examined by 31P NMR under variable-angle sample-spinning (VAS) conditions, confirming that the orientation of the liquid-crystalline director can be influenced by sample spinning. The director is perpendicular to the rotation axis when Θ (the angle between the sample-spinning axis and the magnetic field direction) is smaller than the magic angle, and is parallel to the rotation axis when Θ is larger than the magic angle. The new 31P NMR VAS data presented are considerably more sensitive to the orientation of the bicelle than earlier 2H studies and the analysis of the sideband pattern allows the determination of the orientation of the liquid-crystal director and its variation over the sample, i.e., the mosaic spread. Under VAS, the mosaic spread is small if Θ deviates significantly from the magic angle but becomes very large at the magic angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayle, J.P., Perez, F. and Courtieu, J. (1988) Liq. Cryst., 3, 753-758.

    Google Scholar 

  • Cheng, V.B., Suzukawa, H.H. and Wolfsberg, M. (1973) J. Chem. Phys., 59, 3992-3999.

    Google Scholar 

  • Courtieu, J., Alderman, D.W., Grant, D.M. and Bayles, J.P. (1982) J. Chem. Phys., 77, 723-730.

    Google Scholar 

  • Courtieu, J., Bayle, J.P. and Fung, B.M. (1994) Prog. Nucl. Magn. Reson. Spectrosc., 26, 141-169.

    Google Scholar 

  • Dufourc, E.J., Mayer, C., Stohrer, J., Althoff, G. and Kothe, G. (1992) Biophys. J., 61, 42-57.

    Google Scholar 

  • Gaemers, S. and Bax, A. (2001) J. Am. Chem. Soc., 123, 12343-12352.

    Google Scholar 

  • Glaubitz, C. and Watts, A. (1998) J. Magn. Reson., 130, 305-316.

    Google Scholar 

  • Glover, K.J., Whiles, J.A., Wood, M.J., Melacini, G., Komives, E.A. and Vold, R.R. (2001) Biochemistry, 40, 13137-13142.

    Google Scholar 

  • Hediger, S., Signer, P., Tomaselli, M., Ernst, R.R. and Meier, B.H. (1997) J. Magn. Reson., 125, 291-301.

    Google Scholar 

  • Howard, K.P. and Opella, S.J. (1996) J. Magn. Reson. Ser., B112, 91-94.

    Google Scholar 

  • Kohler, S.J. and Klein, M.P. (1977) Biochemistry, 16, 519-526.

    Google Scholar 

  • Losonczi, J.A. and Prestegard, J.H. (1998) Biochemistry, 37, 706-716.

    Google Scholar 

  • Marassi, F.M., Opella, S.J., Juvvadi, P. and Merrifield, R.B. (1999) Biophys. J., 77, 3152-3155.

    Google Scholar 

  • Mehring, M. (1983) Principles of High Resolution NMR in Solids, Springer-Verlag, Berlin.

    Google Scholar 

  • Moll, F. and Cross, T.A. (1990) Biophys. J., 57, 351-362.

    Google Scholar 

  • Nieh, M.P., Glinka, C.J., Krueger, S., Prosser, R.S. and Katsaras, J. (2001) Langmuir, 17, 2629-2638.

    Google Scholar 

  • Nieh, M.P., Glinka, C.J., Krueger, S., Prosser, R.S. and Katsaras, J. (2002) Biophys. J., 82, 2487-2498.

    Google Scholar 

  • Picard, F., Paquet, M.J., Levesque, J., Belanger, A. and Auger, M. (1999) Biophys. J., 77, 888-902.

    Google Scholar 

  • Prosser, R.S., Hwang, J.S. and Vold, R.R. (1998) Biophys. J., 74, 2405-2418.

    Google Scholar 

  • Sanders, C.R. and Landis, G.C. (1995) Biochemistry, 34, 4030-4040.

    Google Scholar 

  • Sanders, C.R. and Schwonek, J.P. (1992) Biochemistry, 31, 8898-8905.

    Google Scholar 

  • Sanders, C.R., Hare, B.J., Howard, K.P. and Prestegard, J.H. (1994) Prog. Nucl. Magn. Reson. Spectrosc., 26, 421-444.

    Google Scholar 

  • Saupe, A. (1964) Z. Naturforsch., 19a, 161-171.

    Google Scholar 

  • Seelig, J. (1978) Biochim. Biophys. Acta, 515, 105-140.

    Google Scholar 

  • Smith, S.A., Levante, T.O., Meier, B.H. and Ernst, R.R. (1994) J. Magn. Reson. Ser., A106, 75-105.

    Google Scholar 

  • Struppe, J., Komives, E.A., Taylor, S.S. and Vold, R.R. (1998) Biochemistry, 37, 15523-15527.

    Google Scholar 

  • Tian, F., Losonczi, J.A., Fischer, M.W.F. and Prestegard, J.H. (1999) J. Biomol. NMR, 15, 145-150.

    Google Scholar 

  • Vold, R.R. and Prosser, R.S. (1996) J. Magn. Reson. Ser., B113, 267-271.

    Google Scholar 

  • Zandomeneghi, G., Tomaselli, M., Van Beek, J.D. and Meier, B.H. (2001) J. Am. Chem. Soc., 123, 910-913.

    Google Scholar 

  • Zandomeneghi, G., Williams, P.T.F., Hunkeler, A. and Meier, B.H. (2003) J. Biomol. NMR, 25, 125-132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat H. Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zandomeneghi, G., Tomaselli, M., Williamson, P.T. et al. NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation. J Biomol NMR 25, 113–123 (2003). https://doi.org/10.1023/A:1022236217018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022236217018

Navigation