Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T02:58:26.766Z Has data issue: false hasContentIssue false

The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation

Published online by Cambridge University Press:  26 August 2014

A. Bérces*
Affiliation:
Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
M. Egyeki
Affiliation:
Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
A. Fekete
Affiliation:
Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
G. Horneck
Affiliation:
German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Division, Cologne, Germany
G. Kovács
Affiliation:
Hungarian Defence Forces Medical Centre, Institute for Special Military Medicine and CBRN Defence, Budapest, Hungary
C. Panitz
Affiliation:
German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Division, Cologne, Germany
Gy. Rontó
Affiliation:
Research Group for Biophysics, Hungarian Academy of Sciences, Budapest, Hungary

Abstract

The aim of our experiment Phage and Uracil Response was to extend the use of bacteriophage T7 and uracil biological dosimeters for measuring the biologically effective ultraviolet (UV) dose in the harsh extraterrestrial radiation conditions. The biological detectors were exposed in vacuum-tightly cases in the European Space Agency (ESA) astrobiological exposure facility attached to the external platform of Zvezda (EXPOSE-R). EXPOSE-R took off to the International Space Station (ISS) in November 2008 and was installed on the External platform of the Russian module Zvezda of the ISS in March 2009. Our goal was to determine the dose–effect relation for the formation of photoproducts (i.e. damage to phage DNA and uracil, respectively). The extraterrestrial solar UV radiation ranges over the whole spectrum from vacuum-UV (λ<200 nm) to UVA (315 nm<λ<400 nm), which causes photolesions (photoproducts) in the nucleic acids/their components either by photoionization or excitation. However, these wavelengths cause not only photolesions but in a wavelength-dependent efficiency the reversion of some photolesions, too. Our biological detectors measured in situ conditions the resultant of both reactions induced by the extraterrestrial UV radiation. From this aspect the role of the photoreversion in the extension of the biological UV dosimetry are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bérces, A., Fekete, A., Gáspár, S., Gróf, P., Rettberg, P., Horneck, G. & Rontó, Gy. (1999). Biological UV dosimeters in the assessment of the biological hazard from the environmental radiation. J. Photochem. Phototobiol. B.: Biol. 53, 3643.Google Scholar
Berger, T., Hajek, M., Bilski, P., Vanhavere, F., Horwacik, T., Körner, C. & Reitz, G. (2012). Measurements of the dose due to ionizing radiation within the EXPOSE-E experiment applying passive radiation detectors. Astrobiology 12, 387392.Google Scholar
Berger, T., Hajek, M., Bilski, P. & Reitz, G. (2014). Int. J. Astrobiol. (in press).Google Scholar
Blackburn, G.M., Gait, M.J., Loakes, D. & Williams, D.M. (2006). Nucleic Acids in Chemistry and Biology, 3rd edn. RSC Publishing, The Royal Society of Chemistry, Cambridge, UK.Google Scholar
Cadet, J., Sage, E. & Douki, T. (2005). Ultraviolet mediated damage to cellular DNA. Mut. Res. 571, 317.Google Scholar
Douki, T., Zalizniak, T. & Cadet, J. (1997). Far-UV-induced dimeric photoproducts in short oligonucleotides: sequence effects. Photochem. Photobiol. 66, 171179.Google Scholar
Douki, T., Court, M., Sauvaigo, S., Odin, F. & Cadet, J. (2000). Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J. Biol. Chem. 275, 1167811685.Google Scholar
Fekete, A., Vink, A.A., Gáspár, S., Bérces, A., Módos, K., Rontó, Gy. & Roza, L. (1998). Assessment of the effects of various UV sources on inactivation and photoproduct induction in phage T7 dosimeter. Photochem. Photobiol. 68, 527532.Google Scholar
Fekete, A., Módos, K., Hegedüs, M., Kovács, G., Rontó, Gy., Péter, Á., Lammer, H. & Panitz, C. (2005). DNA damage under simulated extraterrestrial conditions in bacteriophage T7. Adv. Space Res. 36, 303310.Google Scholar
Fisher, G.J. & Johns, H.E. (1976). Pyrimidine photodimers. In Photochemistry and Photobiology of Nucleic Acids, ed. Wang, S.Y., pp. 226289. Academic Press, New York.Google Scholar
Fridlund, M. et al. (2010). The search for worlds like our own. Astrobiology 10, 517.Google Scholar
Goldschmidt, G., Kovaliczky, É., Szabó, J., Rontó, Gy. & Bérces, A. (2012 ). In situ biodosimetric experiment for space applications. Orig. Life Evol. Biosph. 42, 247252.Google Scholar
Griffin, W.D. (2013). The quest for extraterrestrial life. What about the viruses? Astrobiology 13, 774783.Google Scholar
Gróf, P., Gáspár, S. & Rontó, Gy. (1996). Use of uracil thin layer for measuring biologically effective UV dose. Photochem. Photobiol. 64, 800806.Google Scholar
Grósz, V., Gorócz, V., Futó, A., Vatali, D., Szabó, J. & Bérces, A. (2013). Continuous measurement of the biological effects of stratospheric UV radiation. –BIODOS Experiment BEXUS -15. In Proc. 21st ESA Symposium on European Rocket and Ballon Programmes and Related Research (ESA SP-721), pp. 315319.Google Scholar
Hegedüs, M., Módos, K., Rontó, Gy. & Fekete, A. (2003). Validation of phage T7 biological dosimeter by quantitative polymerase chain reaction using short and long segments of phage T7 DNA. Photochem. Photobiol. 78, 213220.Google Scholar
Hieda, K., Suzuki, K., Hirono, T., Suzuki, M. & Furuzawa, Y. (1994). Single- and double-strand breaks in pBR322 DNA by vacuum-UV from 8.3 to 20.7 eV. J. Radiat. Res. 35, 104111.Google Scholar
Horneck, G., Bücker, H., Reitz, G., Reinhardt, H., Dose, K., Martens, K.D., Menningmann, H.D. & Weber, P. (1984). Microorganisms in the space environment. Science 225, 226228.Google Scholar
Horneck, G., Eschweiler, U., Reitz, G., Wehner, J., Willimek, R. & Strauch, K. (1995). Biological responses to space: results of the experiment, ‘Exobiological Unit’ of ERA on EURECA I. Adv. Space Res. 16, 105118.Google Scholar
Horneck, G. et al. (1999). Biological experiments on the EXPOSE facility of the International Space Station. ESA SP-433, 459468.Google Scholar
Horneck, G., Rettberg, P., Reitz, G., Wehner, J., Eschweiler, U., Strauch, K., Panitz, C., Starke, V. & Baumstark-Kahn, C. (2001). Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig. Life Evol. Biosph. 31, 527547.Google Scholar
Kerékgyártó, T., Gróf, P. & Rontó, G. (1997). Production and basic application of Uracil dosimeters for measuring the biologically effective UV dose. Centr. Eur. J. Occup. Environ. Med. 3, 143152.Google Scholar
Kovács, G., Fekete, A., Bérces, A. & Rontó, Gy. (2007). The effect of the short wavelength ultraviolet radiation. An extension of biological dosimetry to the UV-C range. J. Photochem. Photobiol. B:. Biol. 88, 7788.Google Scholar
Lindberg, C. & Horneck, G. (1991). Action spectra for survival and spore photoproduct formation of B. subtilis irradiated with short-wavelength (200–300 nm) UV at atmospheric pressure and vacuo. J. Photochem. Photobiol. B: Biol. 11, 6980.Google Scholar
Munakata, N., Saito, M. & Hieda, K. (1991). Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelengths (50–300 nm) obtained with synchrotron radiation. Photochem. Photobiol. 54, 761768.Google Scholar
Munakata, N., Kazadzis, S., Bais, A.F., Hied, K., Rontó, Gy., Rettberg, P. & Horneck, G. (2000). Comparisons of spore dosimetry and spectral photometry of Solar-UV radiation at four sites in Japan and Europe. Photochem. Photobiol. 72, 739745.Google Scholar
Nicholson, W.L. (2009). Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol. 17, 243250.Google Scholar
Nicholson, W.L. et al. (2011). The O/OREOS Mission: first science data from the space environment survivability of living organisms (SELSO) payload. Astrobiology 11, 951958.Google Scholar
Panitz, C., Horneck, G., Rabbow, E., Rettberg, P., Moeller, R., Cadet, J., Douki, T. & Reitz, G. (2014). The SPORES experiment of the EXPOSE-R mission: Bacillus subtilis spores in artificial meteorites. Int. J. Astrobiol. (in press).Google Scholar
Rabbow, E., Rettberg, P., Panitz, C., Drescher, J., Horneck, G. & Reitz, G. (2005). SSIOUX – Space simulation for investigating organics, evolution and exobiology. Adv. Space Res. 36, 297302.Google Scholar
Rabbow, E., Horneck, G., Rettberg, P., Schott, J.U., Panitz, C., Hatton, J., Dettmann, J., Demets, R. & Reitz, G. (2009). EXPOSE, an astrobiological exposure facility on the International Space Station – from proposal to flight. Orig. Life Evol. Biosph. 39, 581598.Google Scholar
Rabbow, E. et al. (2014). The Astrobiological Mission EXPOSE-R on board of the International Space Station. Int. J. Astrobiol. (in press).Google Scholar
RedShift (2011). Design and Engineering BVBA, EXPOSE-R Simulation Results.Google Scholar
Rontó, Gy., Gáspár, S., Gróf, P., Bérces, A. & Gugolya, Z. (1994). Ultrasviolet dosimetry in outdoor measurements based on bacteriophage T7 as a biosensor. Photochem. Photobiol. 59, 209214.Google Scholar
Rontó, Gy., Gáspár, S., Fekete, A., Kerékgyártó, T., Bérces, A. & Gróf, P. (2002). Stability of nucleic acid under the effect of UV radiation. Adv. Space Res. 30, 15331538.Google Scholar
Rontó, Gy., Bérces, A., Fekete, A., Kovács, G., Gróf, P. & Lammer, H. (2004). Biological UV dosimeters in simulated space conditions. Adv. Space Res. 33, 13021305.Google Scholar
Setlow, R.B. & Setlow, J.K. (1965). The proper use of short-wavelength reversal as a criterion of the importance of pyrimidine dimers in biological inactivation. Photochem. Photobiol. 4, 939940.Google Scholar
Stedman, K. & Blumberg, B. (2008). Astrovirology. Astrobiology 8, 316318.Google Scholar
Weber, P. & Greenberg, J.M. (1985). Can spores survive in interstellar space? Nature 316, 403404.Google Scholar