Skip to main content

Advertisement

Log in

Autologous Dendritic Cell Based Adoptive Immunotherapy of Patients with Colorectal Cancer—A Phase I-II Study

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Dendritic cell-based active immunotherapies of cancer patients are aimed to provoke the proliferation and differentiation of tumor-specific CD4+ and CD8+ T-lymphocytes towards protective effector cells. Isolation and in vitro differentiation of circulating blood monocytes has been established a reasonable platform for adoptively transferred DC-based immunotherapies. In the present study the safety and tolerability of vaccination by autologous tumor cell lysates (oncolysate)- or carcinoembriogenic antigen (CEA)-loaded DCs in patients with colorectal cancer was investigated in a phase I-II trial. The study included 12 patients with histologically confirmed colorectal cancer (Dukes B2-C stages). Six of the patients received oncolysate-pulsed, whereas the other six received recombinant CEA-loaded autologous DCs. The potential of the tumor antigen-loaded DCs to provoke the patient’s immune system was studied both in vivo and in vitro. The clinical outcome of the therapy evaluated after 7 years revealed that none of the six patients treated with oncolysate-loaded DCs showed relapse of colorectal cancer, whereas three out of the six patients treated with CEA-loaded DCs died because of tumor relapse. Immunization with both the oncolysate- and the CEA-loaded autologous DCs induced measurable immune responses, which could be detected in vivo by cutaneous reactions and in vitro by lymphocyte proliferation assay. Our results show that vaccination by autologous DCs loaded with autologous oncolysates containing various tumor antigens represents a well tolerated therapeutic modality in patients with colorectal cancer without any detectable adverse effects. Demonstration of the efficacy of such therapy needs further studies with increased number of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

5-FU:

5-Fluorouracil

AICD:

Activation-induced cell death

AIMV:

Serum free therapeutic grade cell culture medium

ALAT:

Alanine amino transferase

AMA:

Antimitochondrial antibody

ANA:

Antinuclear antibody

APC:

Antigen presenting cell

APTI:

Activated partial thromboplastin time

ASAT:

Aspartate amino transferase

CA19.9:

Cancer antigen 19.9

CEA:

Carcinoembriogenic antigen

CRC:

Colorectal carcinoma

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cell

ECOG:

Eastern cooperative oncology group/patient performance status

GM-CSF:

Granulocyte-monocyte colony-stimulating factor

HBsAg:

Hepatitis B surface antigen

HCV:

Hepatitis C virus

HIV:

Human immunodeficiency virus

HLA:

Human leukocyte antigen

IFNγ:

Interferon gamma

IL 12:

Interleukin 12

IL 2:

Interleukin 2

IL 1β:

Interleukin 1beta

IL 6:

Interleukin 6

INR:

Internation normalized ratio (coagulation)

LDH:

Lactate dehydrogenase

MDSC:

Myeloid-derived suppressor cell

MHC:

Major histocompatibility complex

NCI:

National Cancer Institute

NK cell:

Natural killer cell

PBMC:

Peripheral blood mononuclear cells

PGE2:

Prostaglandin E2

PHA:

Phytohaemagglutinin

PI:

Proliferation index

QLQ-C30:

Quality of life questionnaire-Core 30

RBC:

Red blood cell

SGOT:

Serum glutamic oxaloacetate transaminase

SGPT:

Serum glutamic pyruvate transaminase

TAA:

Tumor-associated antigen

TAM:

Tumor-associated macrophage

Tc:

T catalytic lymphocyte

Th:

T helper lymphocyte

TIL:

Tumor infiltrating lymphocytes

TNFα:

Tumor necrosis factor-alpha

WBC:

White blood cell

References

  1. Van-den-Eynde BJ, Van-der-Bruggen P (1997) T cell defined tumor antigens. Curr Opin Immunol 9:684–693

    Article  PubMed  CAS  Google Scholar 

  2. Salgaller ML, Thurner M, Bartsch G, Boynton AL, Murphy GP (1999) Report from the International Union Agaist Cancer (UICC) Tumor Biology Committee: UICC Workshop on the use of dendritic cells in cancer clinical trials. Cancer 86:2674–2683

    Article  PubMed  CAS  Google Scholar 

  3. Sokolof MH, Vogelzang N (1999) The ongoing evolution of dendritic cell therapy. Cancer 86:2593–2596

    Article  Google Scholar 

  4. Knuth A, Wölfel T, Klehmann E, Boon T, Büschenfelde KM (1989) Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection. Proc Natl Acad Sci U S A 86:2804–2808

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Davis ID, Jefford M, Parente P, Cebon J (2003) Rational approaches to human cancer immunotherapy. J Leuk Biol 73:3–29

    Article  CAS  Google Scholar 

  6. Liviu V, Titu E, John R, Monson E, Greenman J (2002) The role of CD8+ T cells in immune responses to colorectal cancer. Cancer Immunol Immunother 51:235–247

    Article  CAS  Google Scholar 

  7. Rock KL, Gamble S, Rothstein L (1990) Presentation of exogenous antigen with class I major histocompatibility complex molecules. Science 249:918–921

    Article  PubMed  CAS  Google Scholar 

  8. Tatsumi T, Takehara T, Kanto T, Miyagi T, Kuzushita N, Sugimoto Y, Jinushi M, Kasahara A, Sasaki Y, Hori M, Hayashi N (2001) Adminstration of interleukin 12 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines in mouse hepatocellular carcinoma. Cancer Res 61:7563–7567

    PubMed  CAS  Google Scholar 

  9. Tuting T, Wilson CC, Martin DM, Kasamon YL, Rowles J, Ma DI, Slingluff CLJ, Wagner SN, Bruggen P, Baar J, Lotze MT, Storkus WJ (1998) Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by co-transfection of genes encoding the Th1-biasing cytokines IL-12 and IFN alfa. J Immunol Methods 160:1139–1147

    CAS  Google Scholar 

  10. Shimizu K, Fields RC, Giedlin M, Mule JJ (1999) Systemic adminstration of interleukin 2 enhances the therapeutic effficacy of dendritic cell-based tumor vaccine. Proc Natl Acad Sci USA 96:2268–2273

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Chen S, Akbar SM, Tanimoto K, Ninomiya T, Iuchi H, Michitaka K, Horiike N, Onji M (2000) Absence of CD83(+)-positive mature and activated dendritic cells at cancer nodules from patients with hepatocellular carcinoma: relevance to hepatocarcinogenesis. Cancer Lett 148:49–57

    Article  PubMed  CAS  Google Scholar 

  12. Van-de-Velde AL, Berneman ZN, Van-Tendeloo VF (2008) Immunotherapy of hematological malignancies using dendritic cells. Bull Cancer 95:320–326

    PubMed  CAS  Google Scholar 

  13. Draube A, Klein-González N, Mattheus S, Brillant C, Hellmich M, Engert A, von Bergwelt-Baildon M (2011) Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. LoS One 6:e18801

    Article  CAS  Google Scholar 

  14. Alexandrescu DT, Ichim TE, Riordan NH, Marincola FM, Di-Nardo A, Kabigting FD, Dasanu CA (2010) Immunotherapy for melanoma: current status and perspectives. J Immunother 33:570–590

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Mazzolini G, Murillo O, Atorrasagasti C, Dubrot J, Tirapu I, Rizzo M, Arina A, Alfaro C, Azpilicueta A, Berasain C, Perez-Gracia JL, Gonzales A, Melero I (2007) Immunotherapy and immunoescape in colorectal cancer. World J Gastroenterol 13:5822–5831

    PubMed  CAS  Google Scholar 

  16. Dauer M, Schnurr M, Eigler A (2008) Dendritic cell-based cancer vaccination: quo vadis? Expert Rev Vaccines 7:1041–1053

    Article  PubMed  CAS  Google Scholar 

  17. Nencioni A, Grünebach F, Schmidt SM, Müller MR, Boy D, Patrone F, Ballestrero A, Brossart P (2008) The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol 65:191–199

    Article  PubMed  Google Scholar 

  18. Vulink A, Radford KJ, Melief C, Hart DN (2008) Dendritic cells in cancer immunotherapy. Adv Cancer Res 99:363–407

    Article  PubMed  CAS  Google Scholar 

  19. Erreni M, Mantovani A, Allavena P (2011) Tumor-associated Macrophages (TAM) and Inflammation in Colorectal Cancer. Cancer Microenviron 4:141–154

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Roxburgh C, McMillan D (2010) Role of systemic inflammatory response in predicting survival in patients with primary operable cancer. Future Oncol 6:149–163

    Article  PubMed  CAS  Google Scholar 

  21. Roxburgh C, McMillan D (2012) The role of the in situ local inflammatory response in predicting recurrence and survival in patients with primary operable colorectal cancer. Cancer Treat Rev 38(5):451–466. doi:10.1016/j.ctrv.2011.09.001, Epub 2011 Sep 25

    Article  PubMed  CAS  Google Scholar 

  22. database-online http://www.cancer.org/Cancer/ColonandRectumCancer/DetailedGuide/colorectal-cancer-survival-rates. Last Medical Review: 05/24/2012; Last Revised: 01/17/2013

  23. Palucka K, Banchereau J, Mellman I (2010) Designing vaccines based on biology of human dendritic cell subsets. Immunity 33:464–478

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Nestle F, Banchereau J, Hart D (2001) Dendritic cells: on the move from bench to bedside. Nat Med 7:761–765

    Article  PubMed  CAS  Google Scholar 

  25. Figdor C, Jd V, Lesterhuis W, Melief C (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480

    Article  PubMed  CAS  Google Scholar 

  26. Dhodapkar MV, Krasovsky J, Steinman RM, Bhardwaj N (2000) Mature dendritic cells boost functionally superior CD8(+) T-cell in humans without foreign helper epitopes. J Clin Invest 105:9–14

    Article  Google Scholar 

  27. Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L, Kandemir A, Lee PP, Schuler G, Knop J, Enk AH (2001) A comparison of two types of dendritic cells as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93:243–251

    Article  PubMed  CAS  Google Scholar 

  28. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitro-derived dendritic cell vaccine. Cancer Res 61:6451–6458

    PubMed  CAS  Google Scholar 

  29. Schuler-Thurnmer B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B, Fritsch PO, Romani N, Schuler G (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195:1279–1288

    Article  CAS  Google Scholar 

  30. Martin-Fontecha A, Sebastiani S, Höpken U, Uguccioni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Jefford M, Maraskovsky E, Cebon J, Davies ID (2001) The use of dendritic cells in cancer therapy. Lancet Oncol 2(6):343–353

    Article  PubMed  CAS  Google Scholar 

  32. Steinman RM, Dhodapkar M (2001) Active immunization against cancer with dendritic cells: the near future. Int J Cancer 94:459–473

    Article  PubMed  CAS  Google Scholar 

  33. Cerundolo V, Hermans I, Salio M (2004) Dendritic cells: a journey from laboratory to clinic. Nat Immunol 5:7–10

    Article  PubMed  CAS  Google Scholar 

  34. Cranmer L, Trevor K, Hersh E (2004) Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol Immunother 53:275–306

    Article  PubMed  Google Scholar 

  35. Kavanagh B, Ko A, Venook A, Margolin K, Zeh H, Lotze M, Schillinger B, Liu W, Lu Y, Mitsky P, Schilling M, Bercovici N, Loudovaris M, Guillermo R, Lee SM, Bender J, Mills B, Fong L (2007) Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides. J Immunother 30:762–772

    Article  PubMed  CAS  Google Scholar 

  36. Mocellin S, Rossi C, Lise M, Nitti D (2004) Colorectal cancer vaccines: principles, results, and perspectives. Gastroenterology 127:1821–1837

    Article  PubMed  CAS  Google Scholar 

  37. Mosolits S, Ullenhag G, Mellstedt H (2005) Therapeutic vaccination in patients with gastrointestinal malignancies. A review of immunological and clinical results. Ann Oncol 16:847–862

    Article  PubMed  CAS  Google Scholar 

  38. Nagorsen D, Thiel E (2006) Clinical and immunologic responses to active specific cancer vaccines in human colorectal cancer. Clin Cancer Res 12:3064–3069

    Article  PubMed  CAS  Google Scholar 

  39. Ridgway D (2003) The first 1000 dendritic cell vaccinees. Cancer Invest 21:873–886

    Article  PubMed  Google Scholar 

  40. Rosenberg S (2004) Development of effective immunotherapy for the treatment of patients with cancer. J Am Coll Surg 198:685–696

    Article  PubMed Central  PubMed  Google Scholar 

  41. Rosenberg S, Yang J, Restifo N (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Lesterhuis WJ, De Vries IJ, Schreibelt G, Schuurhuis DH, Aarntzen EH, De Boer A, Scharenborg NM, Van De Rakt M, Hesselink EJ, Figdor CG, Adema GJ, Punt CJ (2010) Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res 30:5091–5097

    PubMed  Google Scholar 

  43. Okuno K, Sugiura F, Itoh K, Yoshida K, Tsunoda T, Nakamura Y (2012) Recent advances in active specific cancer vaccine treatment for colorectal cancer. Curr Pharm Biotechnol(Feb 14), PMID: 22339221

  44. Sakakibara M, Kanto T, Hayakawa M, Kuroda S, Miyatake H, Itose I, Miyazaki M, Kakita N, Higashitani K, Matsubara T, Hiramatsu N, Kasahara A, Takehara T, Hayashi N (2011) Comprehensive immunological analyses of colorectal cancer patients in the phase I/II study of quickly matured dendritic cell vaccine pulsed with carcinoembryonic antigen peptide. Cancer Immunol Immunother 60:1565–1575

    Article  PubMed  CAS  Google Scholar 

  45. Zhou Q, Peng R, Wu X, Xia Q, Hou J, Ding Y, Zhou Q, Zhang X, Pang Z, Wan D, Zeng Y, Zhang X (2010) The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J Transl Med 8:13

    Article  PubMed Central  PubMed  Google Scholar 

  46. Nagaraj S, Gabrilovich DI (2012) Regulation of suppressive function of myeloid-derived suppressor cells by CD4(+) T cells. Semin Cancer Biol 22(4):282–288. doi:10.1016/j.semcancer.2012.01.010, Epub 2012 Jan 31

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Erdman S, Sohn J, Rao V, Nambiar P, Ge Z, Fox J, Schauer D (2005) CD4 + CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+ mice. Cancer Res 65:3998–4004

    Article  PubMed  CAS  Google Scholar 

  48. Chaput N, Louafi S, Bardier A, Charlotte F, Vaillant J, Ménégaux F, Rosenzwajg M, Lemoine F, Klatzmann D, Taieb J (2009) Identification of CD8 + CD25 + Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58:520–529

    Article  PubMed  CAS  Google Scholar 

  49. Nagorsen D, Voigt S, Berg E, Stein H, Thiel E, Loddenkemper C (2007) Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med 29:62

    Article  CAS  Google Scholar 

  50. Gilboa E (2001) The risk of autoimmunity asssociated with tumor immunotherapy. Nat Immunol 2:789–792

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Szabó.

Additional information

János Hunyadi and Csilla András contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunyadi, J., András, C., Szabó, I. et al. Autologous Dendritic Cell Based Adoptive Immunotherapy of Patients with Colorectal Cancer—A Phase I-II Study. Pathol. Oncol. Res. 20, 357–365 (2014). https://doi.org/10.1007/s12253-013-9704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9704-3

Keywords

Navigation