Skip to main content

Advertisement

Log in

Punicalagin Inhibits Inflammation in LPS-Induced RAW264.7 Macrophages via the Suppression of TLR4-Mediated MAPKs and NF-κB Activation

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Punicalagin (2,3,hexahydroxydiphenoyl-gallagyl-d-glucose and referred to as PUN) is a bioactive ellagitannin isolated from pomegranate, which is widely used for the treatment of inflammatory bowel disease (IBD), diarrhea, and ulcers in Chinese traditional medicine. In this study, we detected the anti-inflammation potentials of PUN in lipopolysaccharide (LPS)-induced macrophages and tried to uncover the underlying mechanism. Results demonstrated that PUN (25, 50, or 100 μM) treatment could significantly decrease the LPS-induced production of nitric oxide), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in RAW264.7 cells. Molecular research showed that PUN inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. Results also indicated that PUN could suppress the phosphorylation of mitogen-activated protein kinase including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase. In conclusion, we observed that PUN could inhibit LPS-induced inflammation, and it may be a potential choice for the treatment of inflammation diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nathan, C. 2002. Points of control in inflammation. Nature 420: 846–852.

    Article  CAS  PubMed  Google Scholar 

  2. Hsu, C.C., J.C. Lien, C.H. Chang, S.C. Kuo, and T.F. Huang. 2013. Yuwen 02f1 suppresses LPS-induced endotoxemia and adjuvant-induced arthritis primarily through blockade of ROS formation, NF-κB and MAPK activation. Biochemical Pharmacology 85: 385–395.

    Article  CAS  PubMed  Google Scholar 

  3. Zingarelli, B., M. Sheehan, and H.R. Wong. 2003. Nuclear factor-κB as a therapeutic target in critical care medicine. Critical Care Medicine 31: S105–S111.

    Article  CAS  PubMed  Google Scholar 

  4. Heiss, E., C. Herhaus, K. Klimo, H. Bartsch, and C. Gerhauser. 2001. Nuclear factor Kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. Journal of Biological Chemistry 276: 32008–32015.

    Article  CAS  PubMed  Google Scholar 

  5. Rim, H.K., W. Cho, S.H. Sung, and K.T. Lee. 2012. Nodakenin suppresses lipopolysaccharide induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor -associated factor 6 and nuclear factor-κB pathways and protects mice from lethal endotoxin shock. Journal of Pharmacology and Experimental Therapeutics 342: 654–664.

    Article  CAS  PubMed  Google Scholar 

  6. Yona, S., and S. Jung. 2010. Monocytes: subsets, origins, fates and functions. Current Opinion in Hematology 17: 53–59.

    Article  PubMed  Google Scholar 

  7. Takeda, K., and S. Akira. 2005. Toll-like receptors in innate immunity. International Immunology 17: 1–14.

    Article  CAS  PubMed  Google Scholar 

  8. Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782–787.

    Article  CAS  PubMed  Google Scholar 

  9. Ci, X., R. Ren, K. Xu, H. Li, Q. Yu, Y. Song, D. Wang, R. Li, and X. Deng. 2010. Schisantherin A exhibits anti-inflammatory properties by down regulating NF-κB and MAPK signaling pathways in lipopolysaccharide-treated RAW264.7 cells. Inflammation 33: 126–136.

    Article  CAS  PubMed  Google Scholar 

  10. Cerda, B., R. Llorach, J.J. Ceron, J.C. Espin, and F.A. Tomas-Barberan. 2003. Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. European Journal of Nutrition 42: 18–28.

    Article  CAS  PubMed  Google Scholar 

  11. Cerda, B., J.J. Ceron, F.A. Tomas-Barberan, and J.C. Espin. 2003. Repeated oral administration of high doses of pomegranate ellagitannin punicalagin to rats for 37 days is not toxic. Journal of Agricultural and Food Chemistry 51: 3493–3501.

    Article  CAS  PubMed  Google Scholar 

  12. Adams, L.S., N.P. Seeram, B.B. Aggarwal, Y. Takada, D. Sand, and D. Heber. 2006. Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. Journal of Agricultural and Food Chemistry 54: 980–985.

    Article  CAS  PubMed  Google Scholar 

  13. Aqil, F., R. Munagala, M.V. Vadhanam, H. Kausar, J. Jeyabalan, D.J. Schultz, and R.C. Gupta. 2012. Anti-proliferative activity and protection against oxidative DNA damage by punicalagin isolated from pomegranate husk. Food Research International 49: 345–353.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zhang, X.H., H. Lei, A.J. Liu, Y.X. Zou, F.M. Shen, and D.F. Su. 2011. Increased oxidative stress is responsible for severer cerebral infarction in stroke-prone spontaneously hypertensive rats. CNS Neuroscience & Therapeutics 17: 590–598.

    Article  CAS  Google Scholar 

  15. Marin, M., R. Maria Giner, J.L. Rios, and M. Carmen Recio. 2013. Intestinalanti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. Journal of Ethnopharmacology 150: 925–934.

    Article  CAS  PubMed  Google Scholar 

  16. Arseculeratne, S.N., A.A. Gunatilaka, and R.G. Panabokke. 1985. Studies on medicinal plants of Sri Lanka: Part 14. Toxicity of some traditional medicinal herbs. Journal of Ethnopharmacology 13: 323–335.

    Article  CAS  PubMed  Google Scholar 

  17. Saxena, A., and N.K. Vikram. 2004. Role of selected Indian plants in management of type 2 diabetes: a review. Journal of Alternative and Complementary Medicine 10: 369–378.

    Article  Google Scholar 

  18. Aviram, M., L. Dornfield, M. Rosenblatt, N. Volkova, M. Kaplan, R. Coleman, T. Hayek, D. Presser, and B. Fuhrman. 2000. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. American Journal of Clinical Nutrition 71: 1062–1076.

    CAS  PubMed  Google Scholar 

  19. Kaplan, M., T. Hayek, A. Raz, R. Coleman, L. Dornfeld, J. Vaya, and M. Aviram. 2001. Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. Journal of Nutrition 131: 2082–2089.

    CAS  PubMed  Google Scholar 

  20. Gil, M.I., F.A. Tomas-Barberan, B. Hess-Pierce, D.M. Holcroft, and A.A. Kader. 2000. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry 48: 4581–4589.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, S.I., B.S. Kim, K.S. Kim, S. Lee, K.S. Shin, and J.S. Lim. 2008. Immune-suppressive activity of punicalagin via inhibition of NFAT activation. Biochemical and Biophysical Research Communications 371: 799–803.

    Article  CAS  PubMed  Google Scholar 

  22. Jean-Gilles, D., L. Li, V.G. Vaidyanathan, R. King, B. Cho, D.R. Wortnen, C.O. Chichester, and N.P. Seeram. 2013. Inhibitory effects of polyphenol punicalagin on type-II collagen degradation in vitro and inflammation in vivo. Chemico-Biological Interactions 205: 90–99.

    Article  CAS  PubMed  Google Scholar 

  23. Laskin, D.L., and K.J. Pendino. 1995. Macrophages and inflammatory mediators in tissue injury. Annual Review of Pharmacology and Toxicology 35: 655–677.

    Article  CAS  PubMed  Google Scholar 

  24. Sharma, J.N., O.A. Al, and S.S. Parvathy. 2007. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15: 252–259.

    Article  CAS  PubMed  Google Scholar 

  25. Yayeh, T., M. Hong, Q. Jia, Y.C. Lee, H.J. Kim, E. Hyun, T.W. Kim, and M.H. Rhee. 2012. Pistacia chinensis inhibits NO production and upregulates HO-1 induction via PI-3 K/Akt pathway in LPS stimulated macrophage cells. American Journal of Chinese Medicine 40: 1085–1097.

    Article  PubMed  Google Scholar 

  26. Han, S., J.H. Lee, C. Kim, D. Nam, W.S. Chung, S.G. Lee, K.S. Ahn, S.K. Cho, M. Cho, and K.S. Ahn. 2013. Capillarisin inhibits iNOS, COX-2 expression, and proinflammatory cytokines in LPS-induced RAW 264.7 macrophages via the suppression of ERK, JNK, and NF-κB activation. Immunopharmacology and Immunotoxicology 35: 34–42.

    Article  CAS  PubMed  Google Scholar 

  27. Turini, M.E., and R.N. DuBois. 2002. Cyclooxygenase-2: a therapeutic target. Annual Review of Medicine 53: 35–57.

    Article  CAS  PubMed  Google Scholar 

  28. Rocca, B., and G.A. FitzGerald. 2002. Cyclooxygenases and prostaglandins: shaping up the immune response. International Immunopharmacology 2: 603–630.

    Article  CAS  PubMed  Google Scholar 

  29. Singh, V.P., C.S. Patil, N.K. Jain, and S.K. Kulkarni. 2004. Aggravation of inflammatory bowel disease by cyclooxygenase-2 inhibitors in rats. Pharmacology 72: 77–84.

    Article  CAS  PubMed  Google Scholar 

  30. Kim, S.J., H.J. Jeong, P.D. Moon, H.M. Lee, H.J. Jung, S.K. Jung, H.K. Rhee, D.C. Yang, S.H. Hong, and H.M. Kim. 2005. Anti-inflammatory activity of gumiganghwaltang through the inhibition of nuclear factor-kappa B activation in peritoneal macrophages. Biological & Pharmaceutical Bulletin 28: 233–237.

    Article  CAS  Google Scholar 

  31. Ling, M., Y. Li, Y. Xu, Y. Pang, L. Shen, R. Jiang, Y. Zhao, X. Yang, J. Zhang, J. Zhou, X. Wang, and Q. Liu. 2012. Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radical Biology and Medicine 52: 1508–1518.

    Article  CAS  PubMed  Google Scholar 

  32. Han, D.W., M.H. Lee, H.H. Kim, S.H. Hyon, and J.C. Park. 2011. Epigallocatechin-3-gallate regulates cell growth, cell cycle and phosphorylated nuclear factor-κB in human dermal fibroblasts. Acta Pharmacologica Sinica 32: 637–646.

    Article  CAS  PubMed  Google Scholar 

  33. Checker, R., R.S. Patwardhan, D. Sharma, J. Menon, M. Thoh, H.N. Bhilwade, T. Konishi, and S.K. Sandur. 2012. Schisandrin B exhibits anti-inflammatory activity through modulation of the redox-sensitive transcription factors Nrf2 and NF-κB. Free Radical Biology and Medicine 53: 1421–1430.

    Article  CAS  PubMed  Google Scholar 

  34. Dai, J.N., Y. Zong, L.M. Zhong, Y.M. Li, W. Zhang, L.G. Bian, Q.L. Ai, Y.D. Liu, J. Sun, and D. Lu. 2011. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PloS One 6: e21891.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Liu, H.T., P. Huang, P. Ma, Q.S. Liu, C. Yu, and Y.G. Du. 2011. Chitosan oligosaccharides suppress LPS-induced IL-8 expression in human umbilical vein endothelial cells through blockade of p38 and Akt protein kinases. Acta Pharmacologica Sinica 32: 478–486.

    Article  PubMed  Google Scholar 

  36. Liu, C., X. Zhang, J.X. Zhou, W. Wei, D.H. Liu, P. Ke, G.F. Zhang, G.J. Cai, and D.F. Su. 2013. The protective action of ketanserin against lipopolysaccharide induced shock in mice is mediated by inhibiting inducible NO synthase expression via the MEK/ERK pathway. Free Radical Biology and Medicine 65: 658–666.

    Article  CAS  PubMed  Google Scholar 

  37. Choi, Y., M.K. Lee, S.Y. Lim, S.H. Sung, and Y.C. Kim. 2009. Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. British Journal of Pharmacology 156: 933–940.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kawasaki, K., S. Akashi, R. Shimazu, T. Yoshida, K. Miyake, and M. Nishijima. 2001. Involvement of TLR4/MD-2 complex in species-specific lipopolysaccharide-mimetic signal transduction by taxol. Journal of Endotoxin Research 7: 232–236.

    Article  CAS  PubMed  Google Scholar 

  39. Baker, R.G., M.S. Hayden, and S. Ghosh. 2011. NF-κB, inflammation, and metabolic disease. Cell Metabolism 13: 11–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Theoharides, T.C., D. Kempuraj, M. Tagen, P. Conti, and D. Kalogeromitros. 2007. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunological Reviews 217: 65–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful for the help from the members of CAU-BUA TCVM teaching and research team. This work was supported by grants from the National Twelve-Five Technological Supported Plan of China (No. 2011BAD34B01) and The Ministry of Agriculture, public service sectors agriculture research projects (No. 201003060-9/10).

Conflict of Interest

The authors declare that they do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fenghua Liu or Jianqin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Yin, P., Wan, C. et al. Punicalagin Inhibits Inflammation in LPS-Induced RAW264.7 Macrophages via the Suppression of TLR4-Mediated MAPKs and NF-κB Activation. Inflammation 37, 956–965 (2014). https://doi.org/10.1007/s10753-014-9816-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9816-2

KEY WORDS

Navigation