Skip to main content
Log in

On the radio spectra of supernova remnants

  • Review Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The theoretical fundamentals of formation of the supernova remnant (SNR) continuum radio spectra are presented in this review. Mainly based on the Fermi 1 theory—also known as diffuse shock acceleration (DSA)—the different shapes (linear or curved in log-log scale) of SNR radio spectra are predicted for both young and evolved SNRs. On the other hand, some particular forms of spectra of older SNRs can be predicted by including the additional processes such as Fermi 2 acceleration mechanism or thermal bremsstrahlung radiation. Also, all of these theoretically predicted forms of radio spectra are compared with real spectra obtained from observations. Finally this review can represent some kind of “atlas” with initial patterns for the different kinds of SNR radio spectra—it should be helpful for radio astronomers in their interpretation of the observed radio spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The magnetic perturbations (from which a high-energy charge particle can be reflected), are connected with turbulent fluid motion in the downstream region. Fast particles are prevented from streaming away upstream of a shock front by the scattering of Alfvén waves which they themselves generate and essentially represent magnetic perturbations in the upstream region.

  2. The relation between the characteristic acceleration times to energy E for DSA and Fermi 2 mechanisms is given by \(t_{\mathrm{acc}}(\mathrm{DSA})\propto M_{\mathrm{A}2}^{-2}t_{\mathrm{acc}} (\mathrm{Fermi}~2)\) (Reynolds 2008), where MA2=u2/vA is the Alfvén Mach number of the downstream flow; u2 is the downstream fluid velocity and vA is the Alfvén speed, defined by vA=B/(μ0 ϱ)1/2, where B is the magnetic field strength, μ0 is the magnetic permeability of the vacuum and ϱ is the mass density.

  3. The value for the magnetic field used here is 100 μG. It is standard value for the compressed and amplified ISM magnetic field by the strong shock wave of an SNR (Arbutina et al. 2012, 2013).

  4. SNR spectral indices are mainly between 0.2 and 0.8.

  5. The magnetic field amplification is driven by the non-linear effects, when pressure of CRs, in addition to the gas pressure, represents a significant part of the total pressure (Bell 2004). A detailed description of the non-linear DSA will be presented later in this review.

  6. The idealized vertical profile of the shock discontinuity is degenerated into the weak subshock discontinuity plus the wide transition region, which together represent a modified shock.

  7. Plasma β=p/pmag, where p is the gas pressure, and pmag is the magnetic pressure.

  8. The mixed-morphology or thermal composite SNRs appear as shell like in radio, but with bright interiors due to thermal X-rays (e.g. Rho and Petre 1998; Jones et al. 1998).

  9. The lifetime of an SNR, as defined by McKee and Ostriker (1977), can be up to one million years—this timescale is comparable to the typical timescale of synchrotron loss for electrons which radiate at the highest radio frequencies.

  10. Crab nebula and SNR 3C58 represent particular type of SNR, the so-called pulsar wind nebulae, which are not target of this review. Contrary to shell-like, composite and mixed-morphology SNRs which are target of this review, the pulsar wind nebulae typically have flat spectral indices between 0.0 and 0.3 (e.g. Reynolds et al. 2012).

  11. Foster et al. (2006) concluded that OA184 is rather a Galactic HII region then an SNR.

  12. It results in the concave-up form of overall radio spectrum.

References

  • Allen, G.E., Houck, J.C., Sturner, S.J.: Evidence of a curved synchrotron spectrum in the supernova remnant SN 1006. Astrophys. J. 683, 773–785 (2008)

    Article  ADS  Google Scholar 

  • Arbutina, B., Urošević, D., Andjelić, M.M., Pavlović, M.Z., Vukotić, B.: Modified equipartition calculation for supernova remnants. Astrophys. J. 746, 79 (2012)

    Article  ADS  Google Scholar 

  • Arbutina, B., Urošević, D., Vučetić, M.M., Pavlović, M.Z., Vukotić, B.: Modified equipartition calculation for supernova remnants. Cases α=0.5 and α=1. Astrophys. J. 777, 31 (2013)

    Article  ADS  Google Scholar 

  • Bell, A.R.: The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978a)

    Article  ADS  Google Scholar 

  • Bell, A.R.: The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 443–455 (1978b)

    Article  ADS  Google Scholar 

  • Bell, A.R.: Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004)

    Article  ADS  Google Scholar 

  • Bell, A.R.: The interaction of cosmic rays and magnetized plasma. Mon. Not. R. Astron. Soc. 358, 181–187 (2005)

    Article  ADS  Google Scholar 

  • Bell, A.R., Schure, K.M., Reville, B.: Cosmic ray acceleration at oblique shocks. Mon. Not. R. Astron. Soc. 418, 1208–1216 (2011)

    Article  ADS  Google Scholar 

  • Berezhko, E.G., Völk, H.J.: The theory of synchrotron emission from supernova remnants. Astron. Astrophys. 427, 525–536 (2004)

    Article  ADS  Google Scholar 

  • Blandford, R.D., Ostriker, J.P.: Particle acceleration by astrophysical shocks. Astrophys. J. 221, L29–L32 (1978)

    Article  ADS  Google Scholar 

  • Bozzetto, L.M., Filipović, M.D., Crawford, E.J., Bojičić, I.S., Payne, J.L., Mendik, A., Wardlaw, B., De Horta, A.Y.: Multifrequency radio observations of a SNR in the LMC. The case of SNR J0527-6549 (DEM L204). Serb. Astron. J. 181, 43–49 (2010)

    Article  ADS  Google Scholar 

  • Bozzetto, L.M., Filipović, M.D., Crawford, E.J.: Radio continuum observations of LMC SNR J0550-6823. Rev. Mex. Astron. Astrophys. 48, 41–46 (2012)

    ADS  Google Scholar 

  • Bozzetto, L.M., Filipović, M.D., Crawford, E.J., Sasaki, M., Maggi, P., Haberl, F., Urošević, D., Payne, J.L., De Horta, A.Y., Stupar, M., Gruendl, R., Dickel, J.: Multifrequency study of SNR J0533-7202, a new supernova remnant in the LMC. Mon. Not. R. Astron. Soc. 432, 2177–2181 (2013)

    Article  ADS  Google Scholar 

  • Braude, S.Ya., Megn, A.V., Ryabov, B.P., Zhouck, I.N.: The spectra of some discrete radio sources in 10–5000 MHz frequency range. Astrophys. Space Sci. 8, 275–322 (1970)

    Article  ADS  Google Scholar 

  • Castelletti, G., Dubner, G.: A multi-frequency study of the spectral index distribution in the SNR CTB 80. Astron. Astrophys. 440, 171–177 (2005)

    Article  ADS  Google Scholar 

  • Crawford, E.J., Filipović, M.D., De Horta, A.Y., Stootman, F.H., Payne, J.L.: Radio-continuum study of the supernova remnants in the Large Magellanic Cloud—an SNR with a highly polarised breakout region—SNR J0455-6838. Serb. Astron. J. 177, 61–66 (2008)

    Article  ADS  Google Scholar 

  • Cummings, A.C.: A study of cosmic ray positron and electron spectra in interplanetary and interstellar space and the solar modulation of cosmic rays. Ph.D. Thesis, Caltech (1973)

  • De Horta, A.Y., Filipović, M.D., Bozzetto, L.M., Maggi, P., Haberl, F., Crawford, E.J., Sasaki, M., Urošević, D., Pietsch, W., Gruendl, R., Dickel, J., Tothill, N.F.H., Chu, Y.-H., Payne, J.L., Collier, J.D.: Multi-frequency study of supernova remnants in the Large Magellanic Cloud. The case of LMC SNR J0530–7007. Astron. Astrophys. 540, 25 (2012)

    Article  Google Scholar 

  • Draine, B.T., Lazarian, A.: Diffuse galactic emission from spinning dust grains. Astrophys. J. 494, L19–L22 (1998)

    Article  ADS  Google Scholar 

  • Drury, L.O.C.: An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 973–1027 (1983)

    Article  ADS  Google Scholar 

  • Drury, L.O.C., Völk, H.J.: Hydromagnetic shock structure in the presence of cosmic rays. Astron. Astrophys. 248, 344–351 (1981)

    ADS  Google Scholar 

  • Eichler, D.: On the theory of cosmic-ray-mediated shocks with variable compression ratio. Astrophys. J. 277, 429–434 (1984)

    Article  ADS  Google Scholar 

  • Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 75, 1169–1174 (1949)

    Article  ADS  MATH  Google Scholar 

  • Foster, T., Kothes, R., Sun, X.H., Reich, W., Han, J.L.: 1051 erg less: the Galactic H II region OA 184. Astron. Astrophys. 454, 517–526 (2006)

    Article  ADS  Google Scholar 

  • Gao, X.Y., Han, J.L., Reich, W., Reich, P., Sun, X.H., Xiao, L.: A Sino-German λ6 cm polarization survey of the Galactic plane. V. Large supernova remnants. Astron. Astrophys. 529, 159 (2011)

    Article  ADS  Google Scholar 

  • Ginzburg, V.L., Syrovatskii, S.I.: Cosmic magnetobremsstrahlung (synchrotron radiation). Annu. Rev. Astron. Astrophys. 3, 297–350 (1965)

    Article  ADS  Google Scholar 

  • Green, D.A.: A revised Galactic supernova remnant catalogue. Bull. Astron. Soc. India 37, 45–61 (2009)

    ADS  Google Scholar 

  • Guseinov, O.H., Ankay, A., Tagieva, S.O.: Observational data on galactic supernova remnants: I. The supernova remnants within l=0–90 degrees. Serb. Astron. J. 167, 93–110 (2003)

    Article  ADS  Google Scholar 

  • Guseinov, O.H., Ankay, A., Tagieva, S.O.: Observational data on galactic supernova remnants: II. The supernova remnants within l=90–270 degrees. Serb. Astron. J. 168, 55–69 (2004a)

    Article  ADS  Google Scholar 

  • Guseinov, O.H., Ankay, A., Tagieva, S.O.: Observational data on galactic supernova remnants: III. The supernova remnants within l=270–360 degrees. Serb. Astron. J. 169, 65–82 (2004b)

    Article  ADS  Google Scholar 

  • Heavens, A.F., Meisenheimer, K.: Particle acceleration in extragalactic sources—the role of synchrotron losses in determining the spectrum. Mon. Not. R. Astron. Soc. 225, 335–353 (1987)

    Article  ADS  Google Scholar 

  • Jiang, Z.J., Zhang, L., Fang, J.: Spectral evolution of accelerated particles in supernova remnants. Mon. Not. R. Astron. Soc. 433, 1271–1275 (2013)

    Article  ADS  Google Scholar 

  • Jones, T.J., Rudnick, L., DeLaney, T., Bowden, J.: The identification of infrared synchrotron radiation from Cassiopeia A. Astrophys. J. 587, 227–234 (2003)

    Article  ADS  Google Scholar 

  • Jones, T.W., Rudnick, L., Jun, B.-Il., Borkowski, K.J., Dubner, G., Frail, D.A., Kang, H., Kassim, N.E., KMcCray, R.: 1051 ergs: the evolution of shell supernova remnants. Publ. Astron. Soc. Pac. 110, 125–151 (1998)

    Article  ADS  Google Scholar 

  • Lacey, C.K., Lazio, T., Joseph, W., Kassim, N.E., Duric, N., Briggs, D.S., Dyer, K.K.: Spatially resolved thermal continuum absorption against supernova remnant W49B. Astrophys. J. 559, 954–962 (2001)

    Article  ADS  Google Scholar 

  • Lequeux, J.: The Interstellar Medium, with the Collaboration of E Falgarone and C Ryter. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  • Longair, M.S.: Stars, the Galaxy and the Interstellar Medium. High energy astrophysics, vol. 2. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • McKee, C.F., Ostriker, J.P.: A theory of the interstellar medium—three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 148–169 (1977)

    Article  ADS  Google Scholar 

  • Onić, D.: Thermal radiation of supernova remnants in radio domain. Ph.D. Thesis, University of Belgrade (2013a)

  • Onić, D.: On the supernova remnants with flat radio spectra. Astrophys. Space Sci. 346, 3–13 (2013b)

    Article  ADS  Google Scholar 

  • Onić, D., Urošević, D.: The analysis of the possible thermal emission at radio frequencies from an evolved supernova remnant HB 3 (G132.7+1.3): revisited. Serb. Astron. J. 177, 67–71 (2008)

    ADS  Google Scholar 

  • Onić, D., Urošević, D., Arbutina, B., Leahy, D.: On the existence of “radio thermally active” Galactic supernova remnants. Astrophys. J. 756, 61 (2012)

    Article  ADS  Google Scholar 

  • Ostrowski, M.: Supernova remnants in molecular clouds: on cosmic ray electron spectra. Astron. Astrophys. 345, 256–258 (1999)

    ADS  Google Scholar 

  • Pavlović, M.Z., Urošević, D., Vukotić, B., Arbutina, B., Göker, Ü.D.: The radio surface-brightness-to-diameter relation for Galactic supernova remnants: sample selection and robust analysis with various fitting offsets. Astrophys. J. Suppl. Ser. 204, 4 (2013)

    Article  ADS  Google Scholar 

  • Pivato, G., Hewitt, J., Tibaldo, L., Acero, F., Ballet, J., Brandt, T.J., de Palma, F., Giordano, F., Janssen, G.H., Johannesson, G., Smith, D.A.: Fermi LAT and WMAP observations of the supernova remnant HB 21. Astrophys. J. 779, 179 (2013)

    Article  ADS  Google Scholar 

  • Reynolds, S.P.: Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89–126 (2008)

    Article  ADS  Google Scholar 

  • Reynolds, S.P., Ellison, D.C.: Electron acceleration in Tycho’s and Kepler’s supernova remnants—spectral evidence of Fermi shock acceleration. Astrophys. J. 399, L75–L78 (1992)

    Article  ADS  Google Scholar 

  • Reynolds, S.P., Gaensler, B.M., Bocchino, F.: Magnetic fields in supernova remnants and pulsar-wind nebulae. Space Sci. Rev. 166, 231–261 (2012)

    Article  ADS  Google Scholar 

  • Rho, J., Petre, R.: Mixed-morphology supernova remnants. Astrophys. J. 503, L167–L170 (1998)

    Article  ADS  Google Scholar 

  • Roger, R.S., Bridle, A.H., Costain, C.H.: The low-frequency spectra of nonthermal radio sources. Astron. J. 78, 1030–1057 (1973)

    Article  ADS  Google Scholar 

  • Roy, S., Pal, S.: Discovery of the Small-diameter, Young Supernova Remnant G354.4+0.0. Astrophys. J. 774, 150 (2013)

    Article  ADS  Google Scholar 

  • Scaife, A., Green, D.A., Battye, R.A., Davies, R.D., Davis, R.J., Dickinson, C., Franzen, T., Génova-Santos, R., Grainge, K., Hafez, Y.A., Hobson, M.P., Lasenby, A., Pooley, G.G., Rajguru, N., Rebolo, R., Rubino-Martin, J.A., Saunders, R.D.E., Scott, P.F., Titterington, D., Waldram, E., Watson, R.A.: Constraints on spinning dust towards Galactic targets with the Very Small Array: a tentative detection of excess microwave emission towards 3C396. Mon. Not. R. Astron. Soc. 377, L69–L73 (2007)

    Article  ADS  Google Scholar 

  • Schlickeiser, R., Fürst, E.: The origin of flat radio spectra in shell-type supernova remnants. Astron. Astrophys. 219, 192–194 (1989)

    ADS  Google Scholar 

  • Su, Y., Che, Y., Yang, J., Koo, B.-C., Zhou, X., Lu, D.-R., Jeong, I.-G., DeLaney, T.: Molecular environment and thermal X-ray spectroscopy of the semicircular young composite supernova remnant 3C 396. Astrophys. J. 727, 43 (2011)

    Article  ADS  Google Scholar 

  • Sun, X.H., Reich, P., Reich, W., Xiao, L., Gao, X.Y., Han, J.L.: A Sino-German λ6 cm polarization survey of the Galactic plane. VII. Small supernova remnants. Astron. Astrophys. 536, 83 (2011)

    Article  ADS  Google Scholar 

  • Uchiyama, Y., Blandford, R.D., Funk, S., Tajima, H., Tanaka, T.: Gamma-ray emission from crushed clouds in supernova remnants. Astrophys. J. 723, L122–L126 (2010)

    Article  ADS  Google Scholar 

  • Urošević, D.: The ΣD relation as an indicator of radio loop origin. Ph.D. Thesis, University of Belgrade (2000)

  • Urošević, D., Duric, N., Pannuti, T.G.: A modified theoretical ΣD relation for supernova remnants: I. The case of constant temperature within the supernova remnant. Serb. Astron. J. 166, 61–66 (2003a)

    ADS  Google Scholar 

  • Urošević, D., Duric, N., Pannuti, T.G.: A modified theoretical ΣD relation for supernova remnants: II. The case of variable temperature within the supernova remnant. Serb. Astron. J. 166, 67–70 (2003b)

    ADS  Google Scholar 

  • Urošević, D., Pannuti, T.G.: Thermal emission at radio frequencies from supernova remnants and a modified theoretical ΣD relation. Astropart. Phys. 23, 577–587 (2005)

    Article  ADS  Google Scholar 

  • Urošević, D., Pannuti, T.G., Leahy, D.: An analysis of the broadband (22–3900 MHz) radio spectrum of HB 3 (G132.7+1.3): the detection of thermal radio emission from an evolved supernova remnant? Astrophys. J. 655, L41–L44 (2007)

    Article  ADS  Google Scholar 

  • Vink, J.: Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev. 20, 49 (2012)

    Article  ADS  Google Scholar 

  • Vink, J., Bleeker, J., van der Heyden, K., Bykov, A., Bamba, A., Yamazak, R.: The X-ray synchrotron emission of RCW 86 and the implications for its age. Astrophys. J. 648, L33–L37 (2006)

    Article  ADS  Google Scholar 

  • Woltjer, L.: Supernova remnants. Annu. Rev. Astron. Astrophys. 10, 129–158 (1972)

    Article  ADS  Google Scholar 

  • Xiao, L., Fürst, E., Reich, W., Han, J.L.: Radio spectral properties and the magnetic field of the SNR S147. Astron. Astrophys. 482, 783–792 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank the referee for excellent comments and suggestions. Also, I would like to thank N. Duric, T. Pannuti, D. Onić, B. Arbutina, and M. Pavlović for help in many aspects: exciting discussions, careful reviewing and editing of typescript, providing some data and references, etc. Their comments provided that the final version of this review has appeared in significantly better form. Additionally I acknowledge the financial support of the Ministry of Education, Science, and Technological Development of the Republic of Serbia through the project No. 176005 “Emission Nebulae: Structure and Evolution”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Urošević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urošević, D. On the radio spectra of supernova remnants. Astrophys Space Sci 354, 541–552 (2014). https://doi.org/10.1007/s10509-014-2095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-014-2095-4

Keywords

Navigation