Skip to main content
Log in

Potential deformation and its application to the diagnosis of heavy precipitation in mesoscale convective systems

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Many observational studies have shown that deformation, like vertical vorticity and divergence, is closely related to the occurrence and distribution of strong precipitation. In this paper, to involve deformation in precipitation diagnosis, a new parameter called potential deformation (PD) is derived and then applied to precipitation detection within a simulated mesoscale convective system (MCS). It is shown that PD includes both stretching deformation and shearing deformation and shares similar characteristics with deformation insofar as it does not change with the rotating coordinate. Diagnosis of the simulated MCS reveals that PD performs well in tracing the MCS’ precipitation. In terms of their distributional pattern, the large-value areas of PD are similar to the precipitation in the different development stages of the MCS. A detailed analysis of the physical processes contained within the PD shows that it can reflect the three-dimensional moisture variation, vertical wind shear and wind deformation within the MCS. These structures are usually a comprehensive reflection of the characteristics of the surface cold pool, rear inflow jet, downward cold air flow and upward warm moist flow within the precipitating convective cells. For this reason, the PD shows much stronger anomalies in the precipitating atmosphere than the non-precipitating atmosphere, which implies considerable potential for its application in detecting heavy precipitation within MCSs.

摘要

许多研究表明, 变形和涡度, 散度一样与强降水的发生发展及分布密切相关. 为了将变形引入到降水的诊断中, 本文提出了一个新的参数—位势形变. 位势形变包含位势伸缩形变和位势切变形变, 且可证明其和形变一样不随坐标的旋转而改变. 将位势形变应用到一次MCS降水过程的诊断分析发现, 位势形变对MCS降水有良好指示意义, 在MCS降水发展的不同阶段, 位势形变的大值区均随着降水的移动而移动. 对包含在位势形变中的物理过程的分析发现位势形变包含三维水汽梯度, 垂直风切变和变形, 这些物理信息能够综合反映MCS中降水单体内的冷池, 尾部入流, 下沉冷气流与上升暖气流的对峙等结构. 因此, 位势形变能够显著区分降水大气与非降水大气, 这体现了位势形变在MCS降水追踪方面的潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396–409.

    Article  Google Scholar 

  • Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, 60 pp. [NTIS COM-73-10781].

    Google Scholar 

  • Bluestein, H. B., 1977: Synoptic-scale deformation and tropical cloud bands. J. Atmos. Sci., 34, 891–900.

    Article  Google Scholar 

  • Bluestein, H. B., 1992: Kinematics of the wind field. Synopticdynamic meteorology in midlatitudes Oxford University Press, New York, 81–109.

    Google Scholar 

  • Cho, H. R., Z. H. Cao, 1998: Generation of moist potential vorticity in extratropical cyclones. Part II: Sensitivity to moisture distribution. J. Atmos. Sci., 55, 595–610.

    Article  Google Scholar 

  • Deng, Q. H., 1986: The deformation field in the planetary boundary layer and heavy rainfall. Journal of Academy of Meteorological Science, 1(2), 165–174 (in Chinese).

    Google Scholar 

  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581.

    Article  Google Scholar 

  • Eliassen, A., 1962: On the vertical circulation in frontal zones. Geofys. Publ., 24(4), 147–160.

    Google Scholar 

  • Ertel, H., 1942: Ein neuer hydrodynamischer Wirbelsatz. Meteorology Zeitschr Braunchweigs, 59, 277–281.

    Google Scholar 

  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955–965.

    Article  Google Scholar 

  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warmseason precipitation in the United States. J. Climate Appl. Meteor., 25, 1333–1345.

    Article  Google Scholar 

  • Gao, S. T., F. Ping, X. F. Li, and W. K. Tao, 2004a: A convective vorticity vector associated with tropical convection: A two-dimensional cloud-resolving modeling study. J. Geophys. Res., 109(D14), D14106.

    Article  Google Scholar 

  • Gao, S. T., X. R. Wang, and Y. S. Zhou, 2004b: Generation of generalized moist potential vorticity in a frictionless and moist adiabatic flow. Geophys. Res. Lett., 31, L12113.

    Google Scholar 

  • Gao, S. T., S. Yang, M. Xue, and C. G. Cui, 2008: Total deformation and its role in heavy precipitation events associated with deformation-dominant flow patterns. Adv. Atmos. Sci., 25(1), 11–28, doi: 10.1007/s00376-008-0011-y.

    Article  Google Scholar 

  • Gao, S. T., X. F. Li, W. K. Tao, C. L. Shie, and S. Lang, 2007: Convective and moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cloud-resolving model simulation. J. Geophys. Res., 112(D1), D01105.

    Article  Google Scholar 

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.

    Article  Google Scholar 

  • Karyampudi, V. M., and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45(21), 3102–3136.

    Article  Google Scholar 

  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762–781.

    Article  Google Scholar 

  • Koch, S. E., 1984: The role of an apparent mesoscale frontogenetic circulation in squall line initiation. Mon. Wea. Rev., 112, 2090–2111.

    Article  Google Scholar 

  • Koch, S. E., and J. McCarthy, 1982: The evolution of an Oklahoma dryline. Part II: Boundary-layer forcing of mesoconvective systems. J. Atmos. Sci., 39, 237–257.

    Article  Google Scholar 

  • Li, N., L. K. Ran, and S. T. Gao, 2016: The impact of deformation on vortex development in a baroclinic moist atmosphere. Adv. Atmos. Sci., 33, 233–246, doi: 10.1007/s00376-015-5082-y.

    Article  Google Scholar 

  • Lin, Y. L., R. D. Farley, H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorol., 22, 1065–1092.

    Article  Google Scholar 

  • Maddox, R. A., 1980: An objective technique for separating macroscale and mesoscale features in meteorological data. Mon. Wea. Rev., 108, 1108–1121.

    Article  Google Scholar 

  • Market, P. S., and D. Cissell, 2002: Formation of a sharp snow gradient in a midwestern heavy snow event. Wea. Forecasting, 17, 723–738.

    Article  Google Scholar 

  • Mason, B. J., 1971: The Physics of Clouds. 2nd ed., Oxford University Press, 671 pp.

    Google Scholar 

  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407pp.

    Book  Google Scholar 

  • Mofor, L. A., and C. G. Lu, 2009: Generalized moist potential vorticity and its application in the analysis of atmospheric flows. Progress in Natural Science, 19, 285–289.

    Article  Google Scholar 

  • Orlanski, I., 1975: Rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527–530.

    Article  Google Scholar 

  • Ran, L. K., and N. Li, 2014: PV-based wave-activity density and its application to tracing heavy precipitation. Meteor. Atmos. Phys., 123, 33–50.

    Article  Google Scholar 

  • Sawyer, J. S., 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 234, 346–362.

    Article  Google Scholar 

  • Schultz, D. M., and J. A. Knox, 2007: Banded convection caused by frontogenesis in a conditionally, symmetrically, and inertially unstable environment. Mon. Wea. Rev., 135, 2095–2110.

    Article  Google Scholar 

  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961–976.

    Article  Google Scholar 

  • Steigerwaldt, H., 1986: Deformation zones and heavy precipitation. National Weather Digest, 11, 15–20.

    Google Scholar 

  • Uccellini, L. W., and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115, 721–729.

    Article  Google Scholar 

  • Weldon, R. B., 1979: Cloud patterns and the upper air wind field. AWS/TR-79/003, Air Weather Service, Scott AFB, 80 pp.

    Google Scholar 

  • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, and K. Brewster, 1995: ARPS version 4.0 user’s guide. Center for Analysis and Prediction of Storms, University of Oklahoma, 380 pp. [Available online at http://www.caps.ou.edu/ARPS/arpsdoc. html.]

    Google Scholar 

  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161–193.

    Article  Google Scholar 

  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143–165.

    Article  Google Scholar 

  • Xue, M., D. H. Wang, J. D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139–170.

    Article  Google Scholar 

  • Yue, C. J., Y. X. Shou, S. W. Shou, G. Zeng, and Y. Q. Wang, 2007: Wet Q vector interpretation technique with its application to quantitative precipitation forecast. Journal of Applied Meteorological Science, 18(5), 666–675 (in Chinese).

    Google Scholar 

  • Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci., 52, 263–285.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Special Scientific Research Fund of the Meteorological Public Welfare of the Ministry of Sciences and Technology (Grant No. GYHY201406002, GYHY201406001), National Key Technology Support Program (Grant No. 2015BAC03B04), a National Program on Key Basic Research project (Grant No. 2013CB430105), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91437215), the National Natural Science Foundation of China (Grant Nos. 41505040, 41375052 41405055 and 41575065), the Open Project of the State Key Laboratory of Severe Weather (LaSW), the Chinese Academy of Meteorological Sciences (CAMS) (Grant No. 2015LASW-B05), and the Beijing Natural Sciences Foundation (Grant No. 8142035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingkun Ran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Ran, L., Zhang, L. et al. Potential deformation and its application to the diagnosis of heavy precipitation in mesoscale convective systems. Adv. Atmos. Sci. 34, 894–908 (2017). https://doi.org/10.1007/s00376-017-6282-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6282-4

Key words

关键词

Navigation