Skip to main content
Log in

Systematic studies on the determination of Hg-labelled proteins using laser ablation-ICPMS and isotope dilution analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method was developed for the precise and accurate determination of ovalbumin labelled with p-hydroxy-mercuribenzoic acid (pHMB) using polyacrylamide gel electrophoresis with ns-laser ablation–inductively coupled plasma mass spectrometry. Following systematic optimisation of the ablation process in terms of detection sensitivity, two different quantification strategies were applied: external calibration using standards of the derivatized protein after 13C+ normalization and, as a proof of concept, label-specific isotope dilution analysis (IDA) using pHMB enriched in the isotope 199Hg. Due to the inhomogeneous distribution of the protein within the gel bands, it could be demonstrated that the IDA approach was superior in terms of precision and accuracy. Furthermore, it permits a reliable quantification, if more complex separation protocols are applied, as typically occurring analyte loss and degradation can be compensated for as soon as complete mixture of spike and sample is achieved. The estimated limit of detection was 160 fmol in the case of ovalbumin. In contrast to earlier studies using metals naturally present in proteins, no loss of mercury was observed during separation under denaturing conditions and other sample preparation steps. Using label-specific IDA, the measured isotope ratios in the gel corresponded to recoveries between 95% and 103%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  2. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Anal Bioanal Chem 389:1017–1031

    Article  CAS  Google Scholar 

  3. Baranov VI, Quinn ZA, Bandura DR, Tanner SD (2002) J Anal At Spectrom 17:1148–1152

    Article  CAS  Google Scholar 

  4. Sanz-Medel A, Montes-Bayon M, de la Campa MDRF, Encinar JR, Bettmer J (2008) Anal Bioanal Chem 390:3–16

    Article  CAS  Google Scholar 

  5. Prange A, Pröfrock D (2008) J Anal At Spectrom 23:432–459

    Article  CAS  Google Scholar 

  6. Neilsen JL, Abildtrup A, Chrsitensen J, Watson P, Cox A, McLeod CW (1998) Spectrochim Acta B 53:339–345

    Article  Google Scholar 

  7. Marshall P, Heudi O, Bains S, Freeman HN, Abou-Shakra F, Reardon K (2002) Analyst 127:459–461

    Article  CAS  Google Scholar 

  8. Becker JS, Boulyga SF, Becker JS, Pickhardt C, Damoc E, Przybylski M (2003) Int J Mass Spectrom 228:985–997

    Article  CAS  Google Scholar 

  9. Wind M, Feldmann I, Jakubowski N, Lehmann WD (2003) Electrophoresis 24:1276–1280

    Article  CAS  Google Scholar 

  10. Chery CC, Günther D, Cornelis R, Vanhaecke F, Moens L (2003) Electrophoresis 24:3305–3313

    Article  CAS  Google Scholar 

  11. Binet MRB, Ma RL, McLeod CW, Poole RK (2004) Anal Biochem 318:30–38

    Article  Google Scholar 

  12. Becker JS, Lobinski R, Becker JS (2009) Metallomics 1:312–316

    Article  CAS  Google Scholar 

  13. Tibi M, Heumann KG (2003) J Anal At Spectrom 18:1076–1081

    Article  CAS  Google Scholar 

  14. Heilmann J, Boulyga SF, Heumann KG (2009) J Anal At Spectrom 24:385–390

    Article  CAS  Google Scholar 

  15. Fernández B, Claverie F, Pécheyran C, Alexis J, Donard OFX (2008) Anal Chem 80:6981–6994

    Article  Google Scholar 

  16. Brun V, Masselon C, Garin J, Dupuis A (2009) J Proteomics 72:740–749

    Article  CAS  Google Scholar 

  17. Bettmer J (2010) Anal Bioanal Chem 397:3495–3502

    Article  CAS  Google Scholar 

  18. Deitrich CL, Braukmann S, Raab A, Munro C, Pioselli B, Krupp EM, Thomas-Oates J, Feldmann J (2010) Anal Bioanal Chem 397:3515–3524

    Article  CAS  Google Scholar 

  19. Tholey A, Schaumlöffel D (2010) Trends Anal Chem 29:399–408

    Article  CAS  Google Scholar 

  20. Bomke S, Sperling M, Karst U (2010) Anal Bioanal Chem 397:3483–3494

    Article  CAS  Google Scholar 

  21. Zhang C, Wu FB, Zhang YY, Wang X, Zhang XR (2001) J Anal At Spectrom 16:1393–1396

    Article  CAS  Google Scholar 

  22. Takatera K, Watanabe T (1992) Anal Sci 8:469–474

    Article  CAS  Google Scholar 

  23. Kutscher DJ, del Castillo Busto ME, Zinn N, Sanz-Medel A, Bettmer J (2008) J Anal At Spectrom 23:1359–1364

    Article  CAS  Google Scholar 

  24. Xu M, Yan XW, Xie QQ, Yang LM, Wang QQ (2010) Anal Chem 82:1616–1620

    Article  CAS  Google Scholar 

  25. Rao YL, Xiang BR, Bramanti E, D’Ulivo, Mester Z (2010) J Agric Food Chem 58:1462–1468

    Article  CAS  Google Scholar 

  26. Kutscher DJ, Bettmer J (2009) Anal Chem 81:9172–9177

    Article  CAS  Google Scholar 

  27. Raab A, Pioselli B, Munro C, Thomas-Oates J, Feldmann J (2009) Electrophoresis 30:303–314

    Article  CAS  Google Scholar 

  28. Fricker MB, Kutscher D, Aeschlimann B, Frommer J, Dietiker R, Bettmer J, Günther D (2011) Int. J Mass Spectrom. doi:10.1016/j.ijms.2011.01.008

  29. Kovacs R, Nishiguchi K, Utani K, Günther D (2010) J Anal At Spectrom 25:142–147

    Article  CAS  Google Scholar 

  30. Taylor PDP, De Bièvre P, Walder AJ, Entwistle A (1995) J Anal At Spectrom 10:395–398

    Article  Google Scholar 

  31. Jakubowski N, Messerschmidt J, Garijo Añorbe M, Waentig L, Hayen H, Roos PH (2008) J Anal At Spectrom 23:1487–1496

    Article  CAS  Google Scholar 

  32. Roos PH, Venkatachalam A, Manz A, Waentig L, Koehler CU, Jakubowski N (2008) Anal Bioanal Chem 392:1135–1147

    Article  CAS  Google Scholar 

  33. Ballihaut G, Claverie F, Pécheyran C, Mounicou S, Grimaud R, Lobinski R (2007) Anal Chem 79:6874–6880

    Article  CAS  Google Scholar 

  34. Müller SD, Diaz-Bone RA, Felix J, Goedecke W (2005) J Anal At Spectrom 20:907–911

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish MICINN (Spanish Ministry for Science and Innovation, Grant No. CTQ2008-01725). Furthermore, D.J.K. acknowledges a Ph.D. grant from MICINN and J.B. a contract within the Ramón y Cajal program of MICINN. The group of Prof. Dr. D. Hilvert, ETH Zurich, is kindly acknowledged for their support in the gel electrophoretic separations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel J. Kutscher or Bodo Hattendorf.

Additional information

Published in the special issue Plasma Spectrochemistry with guest editors Juan Castillo and Martín Resano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutscher, D.J., Fricker, M.B., Hattendorf, B. et al. Systematic studies on the determination of Hg-labelled proteins using laser ablation-ICPMS and isotope dilution analysis. Anal Bioanal Chem 401, 2691–2698 (2011). https://doi.org/10.1007/s00216-011-5199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5199-5

Keywords

Navigation