Skip to main content

Quantum Dot Photonic Crystals

  • Chapter
Book cover Semiconductor Nanocrystals

Part of the book series: Nanostructure Science and Technology ((NST))

  • 481 Accesses

Abstract

An early goal of research in semiconductor quantum dots was to utilize the finite size of these materials to modify the electronic properties of the semiconductor. In particular, researchers wished to modify its electronic density of states, defined as the number of electronic states per unit energy per unit volume. In a bulk semiconductor the density of states, p e , can be described as a smooth function near the valence and conduction band edges, as depicted in Fig. 7.1a.1 However, in a quantum dot, where the continuous bands of the bulk crystal evolve into a series of atomic-like levels due to quantum confinement, p e is dramatically altered.2–4 Indeed, p e can be concentrated into a series of individual features, as shown in Fig. 7.1b.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. W. Ashcroft and N. D. Mermin, Solid State Physics (W B. Saunders, Orlando, 1976), Ch. 28.

    Google Scholar 

  2. A. L. Efros and A. L. Efros, Soy. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

  3. L. E. Brus, J. Chem. Phys. 79, 5566 (1983).

    Article  CAS  Google Scholar 

  4. L. E. Brus, J. Lumin. 32, 381 (1984).

    Article  Google Scholar 

  5. S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev. B 35, 8113 (1987).

    Article  CAS  Google Scholar 

  6. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors ( Springer-Verlag, Berlin, 1996 ), p. 460.

    Google Scholar 

  7. M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quant. Elect. QE-22, 1915 (1986).

    Google Scholar 

  8. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).

    Article  CAS  Google Scholar 

  9. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures, Fundamentals and Applications ( Academic, San Diego, 1991 ).

    Google Scholar 

  10. M. Grundmann, Physica E 5, 167 (2000).

    Article  Google Scholar 

  11. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, Science 290, 314 (2000).

    Article  CAS  Google Scholar 

  12. Cavity Quantum Electrodynamics, edited by P. R. Berman ( Academic Press, San Diego, 1994 ).

    Google Scholar 

  13. E. M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  14. D. Kleppner, Phys. Rev. Lett. 47, 233 (1981).

    Article  CAS  Google Scholar 

  15. S. Haroche and D. Kleppner, Physics Today 42, 24 (January 1989).

    Article  CAS  Google Scholar 

  16. Optical Processes in Microcavities, edited by R. K. Chang and A. J. Campillo, ( World Scientific, Singapore, 1996 ).

    Google Scholar 

  17. Since whispering gallery modes are “leaky”, the photon can never be trapped indefinitely. See Ref. 16.

    Google Scholar 

  18. See, e.g., Confined Electrons and Photons, edited by E. Burstein and C. Weisbuch ( Plenum Press, New York, 1995 ).

    Google Scholar 

  19. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals ( Princeton University Press, Princeton, 1995 ).

    Google Scholar 

  20. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).

    Article  CAS  Google Scholar 

  21. E. Yablonovitch, Sci. Am. 285, 34 (2001).

    Article  Google Scholar 

  22. For recent reviews, see articles in Photonic Band Gap Materials, edited by C. M. Soukoulis (Kluwer, Dordrecht 1996) and Photonic Crystals and Light Localization, edited by C. M. Soukoulis ( Kluwer, Dordrecht 2001 ).

    Google Scholar 

  23. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  CAS  Google Scholar 

  24. S. John, Phys. Rev. Lett. 58, 2486 (1987).

    Article  CAS  Google Scholar 

  25. T. F. Krauss, R. M. De La Rue, and S. Brand, Nature 383, 699 (1996).

    Article  CAS  Google Scholar 

  26. C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, Appl. Phys. Lett. 77, 2813 (2000).

    Article  CAS  Google Scholar 

  27. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).

    CAS  Google Scholar 

  28. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).

    Article  CAS  Google Scholar 

  29. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).

    Article  CAS  Google Scholar 

  30. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).

    Article  CAS  Google Scholar 

  31. V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Y. A. Vlasov, Nuovo Cimento D 17, 1349 (1995).

    Article  Google Scholar 

  32. J. V. Sanders, Acta Cryst. A 24, 427 (1968).

    Article  CAS  Google Scholar 

  33. J. V. Sanders, Nature 204, 1151 (1964).

    Article  Google Scholar 

  34. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, Nature 389 447 (1997).

    Google Scholar 

  35. B. T. Holland, C. F. Blanford, and A. Stein, Science 281 538 (1998).

    Google Scholar 

  36. J. E. G. J. Wijnhoven and W. L. Vos, Science 281, 802 (1998).

    Article  CAS  Google Scholar 

  37. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 74, 3933 (1999).

    Article  CAS  Google Scholar 

  38. G. Subramanian, V. N. Manoharan, J. D. Thorne, and D. J. Pine, Adv. Mater. 11, 1261 (1999).

    Article  CAS  Google Scholar 

  39. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, Science 282, 897 (1998).

    Article  CAS  Google Scholar 

  40. S. H. Park and Y. Xia, Adv. Mater. 10, 1045 (1998).

    Article  CAS  Google Scholar 

  41. P. Jiang, K. S. Hwang, D. M. Mittleman, J. F. Bertone, and V. L. Colvin, J. Am. Chem. Soc. 121, 11630 (1999).

    Article  CAS  Google Scholar 

  42. M. Deutsch, Y. A. Vlasov, and D. J. Norris, Adv. Mater. 12, 1176 (2000).

    Article  CAS  Google Scholar 

  43. O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, Nature 401 548 (1999).

    Google Scholar 

  44. K. M. Kulinowski, P. Jiang, H. Vaswani, and V. L. Colvin, Adv. Mater. 12, 833 (2000).

    Article  CAS  Google Scholar 

  45. J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, Adv. Mater. 12, 888 (2000).

    Article  CAS  Google Scholar 

  46. N. Eradat, J. D. Huang, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, in Photonic Crystals and Light Localization, edited by C. M. Soukoulis ( Kluwer, Dordrecht, 2001 ).

    Google Scholar 

  47. Y. A. Vlasov, N. Yao, and D. J. Norris, Adv. Mater. 11, 165 (1999).

    Article  CAS  Google Scholar 

  48. H. Miguez, A. Blanco, F. Meseguer, C. Lopez, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, Phys. Rev. B 59, 1563 (1999).

    Article  CAS  Google Scholar 

  49. P. V. Braun and P. Wiltzius, Nature 402, 603 (1999).

    Article  CAS  Google Scholar 

  50. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. v. Driel, Nature 405, 437 (2000).

    Article  CAS  Google Scholar 

  51. H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Fornés, Langmuir 16, 4405 (2000).

    Article  CAS  Google Scholar 

  52. S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Muller, and R. Zentel, Appl. Phys. Lett. 79, 731 (2001).

    Article  CAS  Google Scholar 

  53. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001).

    Article  CAS  Google Scholar 

  54. H. S. Söztier, J. W. Haus, and R. Inguva, Phys. Rev. B 45, 13962 (1992).

    Article  Google Scholar 

  55. K. Busch and S. John, Phys. Rev. E 58, 3896 (1998).

    Article  CAS  Google Scholar 

  56. M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, J. Opt. Soc. Am. B 16, 1403 (1999).

    Article  CAS  Google Scholar 

  57. A. F. Koenderink, L. Bechger, H. P. Schriemer, A. Lagendijk, and W. L. Vos, Phys. Rev. Lett. 88, 143903 /1 (2002).

    Google Scholar 

  58. M. J. A. de Dood, Ph.D. thesis, Utrecht University, 2002.

    Google Scholar 

  59. A. P. Alivisatos, Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  60. M. Nirmal and L. E. Brus, Acc. Chem. Res. 32, 407 (1999).

    Article  CAS  Google Scholar 

  61. A. Eychmüller, J. Phys. Chem. B 104, 6514 (2000).

    Article  Google Scholar 

  62. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Ann. Rev. Mater. Sci. 30, 545 (2000).

    Article  CAS  Google Scholar 

  63. V. N. Astratov, Y. A. Viasov, O. Z. Karimov, A. A. Kaplyanskii, Y. G. Musikhin, N. A. Bert, V. N. Bogomolov, and A. V. Prokofiev, Phys. Lett. A 222, 349 (1996).

    Article  CAS  Google Scholar 

  64. S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. Sotomayor Torres, Appl. Phys. Lett. 70, 2091 (1997).

    Article  CAS  Google Scholar 

  65. H. M. Yates, M. E. Pemble, H. Miguez, A. Blanco, C. Lopez, F. Meseguer, and L. Vazquez, J. Cryst. Growth 193, 9 (1998).

    Article  CAS  Google Scholar 

  66. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

    Article  CAS  Google Scholar 

  67. J. E. Bowen Katari, V. L. Colvin, and A. P. Alivisatos, J. Phys. Chem. 98, 4109 (1994).

    Article  Google Scholar 

  68. O. I. Micic, J. R. Sprague, C. J. Curtis, K. M. Jones, J. L. Macho!, A. J. Nozik, H. Giessen, B. Fluegel, G. Mohs, and N. Peyhambarian, J. Phys. Chem. 99 7754 (1995).

    Google Scholar 

  69. A. A. Guzelian, U. Banin, A. V. Kadavanich, X. Peng, and A. P. Alivisatos, Appl. Phys. Lett. 69, 1432 (1996).

    Article  CAS  Google Scholar 

  70. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. B 102, 3655 (1998).

    Article  CAS  Google Scholar 

  71. D. J. Norris, N. Yao, F. T. Chamock, and T. A. Kennedy, Nano Lett. 1, 3 (2001).

    Article  CAS  Google Scholar 

  72. Z. A. Peng and X. Peng, J. Am. Chem. Soc. 123, 168 (2001).

    Google Scholar 

  73. D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, Phys. Rev. Lett. 72, 2612 (1994).

    Article  CAS  Google Scholar 

  74. M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, and M. Rosen, Phys. Rev. Lett. 75, 3728 (1995).

    Article  CAS  Google Scholar 

  75. D. J. Norris and M. G. Bawendi, Phys. Rev. B 53, 16338 (1996).

    Article  CAS  Google Scholar 

  76. D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, Phys. Rev. B 53, 16347 (1996).

    Article  CAS  Google Scholar 

  77. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).

    Article  CAS  Google Scholar 

  78. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997).

    Article  CAS  Google Scholar 

  79. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).

    Article  CAS  Google Scholar 

  80. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature 370, 354 (1994).

    Article  CAS  Google Scholar 

  81. B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, Appl. Phys. Lett. 66, 1316 (1995).

    Article  CAS  Google Scholar 

  82. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, Science 295, 1506 (2002).

    Article  Google Scholar 

  83. H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, Appl. Phys. Lett. 80, 4614 (2002).

    Article  CAS  Google Scholar 

  84. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science 270, 1335 (1995).

    Article  CAS  Google Scholar 

  85. L. Brus, J. Phys. Chem. 98, 3575 (1994).

    Article  CAS  Google Scholar 

  86. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, J. Chem. Soc. Commun., 801 (1994).

    Google Scholar 

  87. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, Science 277, 1978 (1997).

    Article  CAS  Google Scholar 

  88. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).

    Article  CAS  Google Scholar 

  89. Y. A. Viasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, Phys. Rev. E 61, 5784 (2000).

    Article  Google Scholar 

  90. Z.-Y. Li and Z.-Q. Zhang, Phys. Rev. B 62, 1516 (2000).

    Article  CAS  Google Scholar 

  91. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, Nature 361, 26 (1993).

    Article  Google Scholar 

  92. A. S. Dimitrov, C. D. Dushkin, H. Yoshimura, and K. Nagayama, Langmuir 10, 432 (1994).

    Article  CAS  Google Scholar 

  93. C. D. Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura, and K. Nagayama, Colloid Polym. Sci. 277, 914 (1999).

    Article  CAS  Google Scholar 

  94. A. S. Dimitrov and K. Nagayama, Langmuir 12, 1303 (1996).

    Article  CAS  Google Scholar 

  95. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999).

    Article  CAS  Google Scholar 

  96. E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).

    Article  CAS  Google Scholar 

  97. V. Yannopapas, N. Stefanou, and A. Modinos, J. Phys.: Condens. Matter 9, 10261 (1997).

    Article  CAS  Google Scholar 

  98. D. J. Norris and Y. A. Viasov, in Photonic Crystals and Light Localization, edited by C. M. Soukoulis ( Kluwer, Dordrecht, 2001 ), p. 229.

    Book  Google Scholar 

  99. K. W.-K. Shung and Y. C. Tsai, Phys. Rev. B 48, 11265 (1993).

    Article  Google Scholar 

  100. Y. A. Vlasov, M. Deutch, and D. J. Norris, Appt Phys. Lett. 76, 1627 (2000).

    Article  CAS  Google Scholar 

  101. C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, IBM J. Res. und Dev. 45, 47 (2001).

    Article  CAS  Google Scholar 

  102. F. Chen, K. L. Stokes, W. Zhou, J. Fang, and C. B. Murray, Mat. Res. Soc. Symp. Proc. 691, G10. 2. 1 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Norris, D.J., Vlasov, Y.A. (2003). Quantum Dot Photonic Crystals. In: Efros, A.L., Lockwood, D.J., Tsybeskov, L. (eds) Semiconductor Nanocrystals. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3677-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3677-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3402-4

  • Online ISBN: 978-1-4757-3677-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics