Skip to main content
Log in

Updated status of the global electroweak fit and constraints on new physics

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present an update of the Standard Model fit to electroweak precision data. We include newest experimental results on the top-quark mass, the W mass and width, and the Higgs-boson mass bounds from LEP, Tevatron and the LHC. We also include a new determination of the electromagnetic coupling strength at the Z pole. We find for the Higgs-boson mass \(91^{+30}_{-23}~\mbox{GeV}\) and \(120^{+12}_{-5}~\mbox{GeV}\) when not including and including the direct Higgs searches, respectively. From the latter fit we indirectly determine the W mass to be \((80.360^{+0.014}_{-0.013})~\mbox{GeV}\). We exploit the data to determine experimental constraints on the oblique vacuum polarisation parameters, and confront these with predictions from the Standard Model (SM) and selected SM extensions. By fitting the oblique parameters to the electroweak data we derive allowed regions in the BSM parameter spaces. We revisit and consistently update these constraints for a fourth fermion generation, two Higgs doublet, inert Higgs and littlest Higgs models, models with large, universal or warped extra dimensions and technicolour. In most of the models studied a heavy Higgs boson can be made compatible with the electroweak precision data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 12
Fig. 11
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. Up to two-loop electroweak corrections are available in Refs. [2132]. All known QCD corrections are given in Refs. [22, 26, 33].

  2. In the analysis and throughout this paper we use the \(\overline {\mathrm {MS}}\) renormalised masses of the c and b quarks, \(\overline {m}_{c}(\overline {m}_{c})\) and \(\overline {m}_{b}(\overline {m}_{b})\), at their proper scales. In the following they are denoted with \(\overline {m}_{c}\) and \(\overline {m}_{b}\), respectively, and their values are taken from [36].

  3. Using an external precision measurement of \(\alpha _{\scriptscriptstyle S}(M_{Z}^{2})\) in the fit has been studied in Ref. [2] and found to have a negligible impact on the M H result.

  4. We do not include the CDF and D0 measurements of the forward-backward charge asymmetry in \(p\overline{p}\to Z/\gamma^{\star}+X\to e^{+}e^{-}+X\) events, used to extract the \(\sin ^{2}\theta ^{e}_{\mathrm {eff}}\) values 0.2238±0.0040±0.0030 by CDF [40], and 0.2326±0.0018±0.0006 by D0 [41], as their impact so far is negligible compared to the precision of the combined Z pole data in the fit, \(\sin ^{2}\theta ^{\ell}_{\mathrm {eff}}=0.23143 \pm 0.00013\). Also due to lack of precision, we do not include results from atomic parity violation measurements, and from parity violation left–right asymmetry measurements using fixed target polarised Møller scattering at low Q 2 (see [2] for references).

    The NuTeV Collaboration measured ratios of neutral and charged current cross sections in neutrino–nucleon scattering at an average Q 2≃20 GeV2 using both muon neutrino and muon anti-neutrino beams [42]. The results derived for the effective weak couplings are not included in this analysis because of unclear theoretical uncertainties from QCD effects such as next-to-leading order corrections and nuclear effects of the bound nucleon parton distribution functions [43] (for reviews see, e.g., Refs. [44, 45]).

  5. In Ref. [53] the \(\overline {\mathrm {MS}}\) scheme is used to predict the QCD scaling function versus scale ratios (including the dependence on the top mass) that, convolved with the parton luminosity and multiplied by \((\alpha _{\scriptscriptstyle S}/\overline{m}_{t})^{2}\), determines the inclusive \(t\overline{t}\) production cross section. The experimental cross section measurement thus allows one to infer \(\overline{m}_{t}\) and hence the pole mass (being the renormalised quark mass in the on-shell renormalisation scheme) from the ratio of the corresponding renormalisation factors known to three loops [54]. The numerical analysis must account for the dependence of the experimental cross section value on the top mass used to determine the detector acceptance and reconstruction efficiencies.

  6. The quoted error on the extracted top mass does not include the ambiguity in the Monte Carlo top-mass interpretation.

  7. A mistake has been found in the published result of \(\Delta \alpha _{\mathrm {had}}^{(5)}(M_{Z}^{2})\) [58]. The corrected result used here is reported in Version 2 of the arXiv submission [1010.4180].

  8. In lack of published CLs+b values by ATLAS [63] we approximate a chi-squared behaviour of the \(\tilde{q}_{\mu}\) test statistics used [65] and compute \(\mathrm{CL}_{\mathrm{s}+\mathrm{b}} \simeq \mathrm{Prob}(\tilde{q}_{1},1)\), where the published p 0 values have been converted into \(\tilde{q}_{0}\), and \(\tilde{q}_{1} = \tilde{q}_{0} -2\mathrm{LLR}\) with the definition \(\mathrm{LLR}=-2\ln({\mathcal{L}}(1,\hat{\hat{\theta}})/{\mathcal{L}}(0,\hat{\theta}))\). A nearly identical result is found with CLs+b≃Prob(−2LLR+offset,1), where the offset of 1.1 has been added to ensure positive values over the Higgs mass range, and using the published LLR numbers only. These are the numbers used in the fit.

  9. The CLs+b obtained from the direct Higgs searches has been left unaltered during the Monte Carlo-based p-value evaluation of the complete fit. This is justified by the strong statistical significance of the LEP constraint, which drives the contribution of the direct Higgs searches to the \(\chi ^{2}_{\mathrm {min}}\).

  10. It is noticeable that the values of the four theoretical uncertainty parameters converge at the limits of their allowed intervals. This is explained by their uniform contribution to the χ 2 function but the necessarily non-uniform values of the global χ 2 function that depends on these theory parameters. The fit thus converges at the extrema of the allowed ranges.

  11. We have verified the chi-squared property of the test statistics by sampling pseudo MC experiments.

  12. Repeating the standard fit with all theory uncertainties fixed to zero gives \(\chi ^{2}_{\mathrm {min}}=17.2\) and \(M_{H}=94^{+30}_{-24}~\mathrm {GeV}\). A direct comparison of this result with Eq. (1) is not straightforward as the fit uses the additional nuisance parameters, when let free to vary, to improve the test statistics (recall the value of \(\chi ^{2}_{\mathrm {min}}=16.7\) for the standard fit result). The impact on the parameter errors would become noticeable once the input observables exhibit better compatibility (cf. discussion in Ref. [2]).

  13. The uncertainties in the free fit parameters that are correlated to M H (mainly \(\Delta \alpha _{\mathrm {had}}^{(5)}(M_{Z}^{2})\) and m t ) contribute to the errors shown in Fig. 3, and generate correlations between the four M H values found.

  14. Note that by fixing M H the number of degrees of freedom of the fit is increased compared to the standard fit resulting in a larger average \(\chi ^{2}_{\min }\) and thus in a larger p-value.

  15. Had we determined M H by confronting experimental and predicted oblique parameters, we would reproduce Fig. 4 up to deviations due to the higher-order and non-oblique corrections present in the standard electroweak fit.

  16. A detailed numerical SM4 analysis [80] taking into account low-energy FCNC processes in the quark sector, electroweak oblique corrections, and lepton decays (but not lepton mixing) concludes that small mixing between the quarks of the first three and those of the fourth family is favoured. The value of |V tb | is found in this analysis to exceed 0.93. The no-mixing assumption allows us to use the measured value of G F , extracted from the muon lifetime under the SM3 hypothesis, to its full precision [84].

  17. The functions in Eqs. (18)–(20) are defined as follows. F(x 1,x 2)=(x 1+x 2)/2−x 1 x 2/(x 1x 2)⋅ln(x 1/x 2), G(x)=−4yarctan(1/y), \(y=\sqrt{4x-1}\), and \(f(x_{1},x_{2})=-2\sqrt{\Delta}[\arctan((x_{1}-x_{2}+1)/\sqrt{\Delta})-\arctan((x_{1}-x_{2}-1)/\sqrt{\Delta})]\) for Δ>0, f(x 1,x 2)=0 for Δ=0, and \(f(x_{1},x_{2})=\sqrt{-\Delta}\cdot\ln((X+\sqrt{-\Delta})/(X-\sqrt{-\Delta}))\) with X=x 1+x 2−1 for Δ<0, and where Δ=2(x 1+x 2)−(x 1x 2)2−1.

  18. Ignoring flavour mixing between the fourth and the SM generations, it was found in Ref. [100] that absolute vacuum stability of the running Higgs self coupling approximately requires the mass hierarchy \(M_{H} \gtrsim m_{u_{4}}\). This strong lower bound on the Higgs-boson mass may possibly be weakened by looser stability requirements. For example, in SM3 the absolute stability lower bound on M H is significantly reduced by allowing the minimum potential to be metastable with finite probability not to have tunnelled into another, deeper minimum during the lifetime of the universe [101, 102]. In the following discussion we will ignore the stability bound on M H .

  19. The functions defined in Eqs. (21)–(23) are defined as follows. \(\mathcal{B}_{22}(q^{2},m_{1}^{2},m_{2}^{2}) = q^{2}/24\{2\ln q^{2} + \ln(x_{1}x_{2})+[(x_{1}-x_{2})^{3}-3(x_{1}^{2}-x_{2}^{2}) + 3(x_{1}-x_{2})]\ln(x_{1}/x_{2})- [2(x_{1}-x_{2})^{2}-8(x_{1}+x_{2})+10/3 ] - [(x_{1}-x_{2})^{2}-2(x_{1}+x_{2})+1]f(x_{1},x_{2})-6F(x_{1},x_{2})\} \overset{m_{1}=m_{2}}{\Rightarrow}q^{2}/24 [2\ln q^{2} + 2\ln x_{1} + ( 16x_{1} - 10/3 ) +(4x_{1}-1)G(x_{1}) ]\), where \(x_{i} \equiv m_{i}^{2}/q^{2}\), \(\mathcal{B}_{0}(q^{2},m_{1}^{2},m_{2}^{2}) = 1 + 1/2 [(x_{1} + x_{2})/(x_{1} - x_{2}) - (x_{1} - x_{2}) ] \ln(x_{1}/x_{2}) + 1/2f(x_{1}, x_{2}) \overset{m_{1} = m_{2}}{\Rightarrow}2 - 2y\arctan(1/y), \quad y = \sqrt{4x_{1} - 1}\), \(\overline{B}_{0}(m_{1}^{2},m_{2}^{2},m_{3}^{2}) = (m_{1}^{2}\ln m_{1}^{2} - m_{3}^{2}\ln m_{3}^{2})/(m_{1}^{2}-m_{3}^{2}) - (m_{1}^{2}\ln m_{1}^{2} - m_{2}^{2} \ln m_{2}^{2})/(m_{1}^{2}-m_{2}^{2})\) [89], see also Footnote 17 on page 14.

  20. It has been shown [143] that the T-odd partner of the hypercharge gauge boson (the heavy photon) can give rise to the observed relic density of the universe.

  21. The parameter s λ is defined by \(s_{\lambda} = \lambda_{2}/\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}\), where λ 1 and λ 2 are the Yukawa couplings of the new top states.

  22. A different result for the gauge sector contribution has been published in Ref. [145], where the logarithmic term is found to cancel. We thank Masaki Asano for pointing that out to us. The numerical effect of this correction is contained within the theoretical uncertainty of ±5 assigned to the δ c coefficient.

  23. The δ c parameter is treated as theory uncertainty varying in the range [−5,5] in the fit.

  24. If the UED is embedded into large extra dimensions of size eV−1 accessible to gravity only, the lightest KK state could decay via KK-number violating gravitational interaction into a photon and an eV-spaced graviton tower of mass equivalent between zero and R −1 [167]. Such a model provides a clear collider signature with two isolated photons and missing transverse energy in the final state, which has been searched for at ATLAS [168] and D0 [169].

  25. This effect is similar to the cancellation of the negative SM Higgs contribution to T with the positive contribution from the top sector in the littlest Higgs model (cf. Sect. 4.4).

  26. The lower mass limits are determined by where the calculation of the oblique parameters can be trusted.

  27. Owing to U(1) Q gauge symmetry, for the photon propagator the term q μ q ν has no physical effect. For the (massive) W and Z propagators the terms are also negligible, since, in the interaction with light fermions, they are suppressed by the fermion mass scale compared with the g μν parts. From now on we shall ignore the q μ q ν terms.

  28. Throughout this appendix the superscript (0) is used to label tree-level quantities.

References

  1. G. Cowan (Particle Data Group), J. Phys. G 37, 075021 (2010)

    ADS  Google Scholar 

  2. H. Flaecher et al. (Gfitter Group), Eur. Phys. J. C 60, 543 (2009). arxiv:0811.0009

    ADS  Google Scholar 

  3. LEP Electroweak Working Group (LEP EWWG), Status of July 2010. http://lepewwg.web.cern.ch/LEPEWWG/

  4. J. Erler, P. Langacker (Particle Data Group), J. Phys. G 37, 075021 (2010)

    ADS  Google Scholar 

  5. M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)

    ADS  Google Scholar 

  6. M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992)

    ADS  Google Scholar 

  7. W.J. Marciano, J.L. Rosner, Phys. Rev. Lett. 65, 2963 (1990)

    ADS  Google Scholar 

  8. D.C. Kennedy, P. Langacker, Phys. Rev. Lett. 65, 2967 (1990)

    ADS  Google Scholar 

  9. D.C. Kennedy, P. Langacker, Phys. Rev. D 44, 1591 (1991). Erratum: Phys. Rev. D 66, 395 (1991)

    ADS  Google Scholar 

  10. B. Holdom, J. Terning, Phys. Lett. B 247, 88 (1990)

    ADS  Google Scholar 

  11. M. Golden, L. Randall, Nucl. Phys. B 361, 3 (1991)

    ADS  Google Scholar 

  12. G. Altarelli, R. Barbieri, Phys. Lett. B 253, 161 (1991)

    ADS  Google Scholar 

  13. G. Altarelli, R. Barbieri, S. Jadach, Nucl. Phys. B 369, 3 (1992). Erratum: Nucl. Phys. B 376, 444 (1992)

    ADS  Google Scholar 

  14. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. D 69, 053006 (2004). hep-ph/0311148

    ADS  Google Scholar 

  15. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. Lett. 93, 201805 (2004). hep-ph/0407317

    ADS  Google Scholar 

  16. M. Awramik, M. Czakon, A. Freitas, J. High Energy Phys. 11, 048 (2006). hep-ph/0608099

    ADS  Google Scholar 

  17. K. Hagiwara, S. Matsumoto, D. Haidt, C. Kim, Z. Phys. C 64, 559 (1994). hep-ph/9409380. Order of authors changed in journal

    ADS  Google Scholar 

  18. K. Hagiwara, Annu. Rev. Nucl. Part. Sci. 48, 463 (1998)

    ADS  Google Scholar 

  19. G.-C. Cho, K. Hagiwara, Nucl. Phys. B 574, 623 (2000). hep-ph/9912260

    ADS  Google Scholar 

  20. G.-C. Cho, K. Hagiwara, Y. Matsumoto, D. Nomura, 1104.1769

  21. A.A. Akhundov, D.Y. Bardin, T. Riemann, Nucl. Phys. B 276, 1 (1986)

    ADS  Google Scholar 

  22. A.B. Arbuzov et al., Comput. Phys. Commun. 174, 728 (2006). hep-ph/0507146

    ADS  Google Scholar 

  23. D.Y. Bardin, S. Riemann, T. Riemann, Z. Phys. C 32, 121 (1986)

    ADS  Google Scholar 

  24. R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci, A. Vicere, Nucl. Phys. B 409, 105 (1993)

    ADS  Google Scholar 

  25. J. Fleischer, O.V. Tarasov, F. Jegerlehner, Phys. Lett. B 319, 249 (1993)

    ADS  Google Scholar 

  26. D.Y. Bardin et al., Comput. Phys. Commun. 133, 229 (2001). hep-ph/9908433

    MATH  ADS  Google Scholar 

  27. G. Degrassi, S. Fanchiotti, F. Feruglio, B.P. Gambino, A. Vicini, Phys. Lett. B 350, 75 (1995). hep-ph/9412380

    ADS  Google Scholar 

  28. G. Degrassi, F. Feruglio, A. Vicini, S. Fanchiotti, P. Gambino, hep-ph/9507286

  29. G. Degrassi, P. Gambino, A. Vicini, Phys. Lett. B 383, 219 (1996). hep-ph/9603374

    ADS  Google Scholar 

  30. G. Degrassi, P. Gambino, Nucl. Phys. B 567, 3 (2000). hep-ph/9905472

    Google Scholar 

  31. D.Y. Bardin et al. (Electroweak Working Group), hep-ph/9709229. Prepared for Workshop Group on Precision Calculations for the Z Resonance (2nd meeting held March 31, 3rd meeting held June 13), Geneva, Switzerland, 14 January 1994, CERN-YELLOW-95-03A

  32. D.Y. Bardin, G. Passarino, The Standard Model in the Making (Clarendon, Oxford, 1999)

    Google Scholar 

  33. B.A. Kniehl, Nucl. Phys. B 347, 86 (1990)

    ADS  Google Scholar 

  34. M. Goebel, PhD thesis, University Hamburg (2011)

  35. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, Phys. Rev. Lett. 101, 012002 (2008). arxiv:0801.1821

    ADS  Google Scholar 

  36. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    ADS  Google Scholar 

  37. A. Hoecker, H. Lacker, S. Laplace, F. Le Diberder, Eur. Phys. J. C 21, 225 (2001). hep-ph/0104062

    ADS  Google Scholar 

  38. J. Charles et al. (CKMfitter Group), Eur. Phys. J. C 41, 1 (2005). hep-ph/0406184

    ADS  Google Scholar 

  39. The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the SLD Electroweak and Heavy Flavour Working Groups, Phys. Rep. 427, 257 (2006). hep-ex/0509008

    ADS  Google Scholar 

  40. D.E. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 052002 (2005). hep-ex/0411059

    ADS  Google Scholar 

  41. V. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 191801 (2008). arxiv:0804.3220

    ADS  Google Scholar 

  42. G.P. Zeller et al.(NuTeV Collaboration), Phys. Rev. Lett. 88, 091802 (2002). hep-ex/0110059

    ADS  Google Scholar 

  43. K.J. Eskola, H. Paukkunen, J. High Energy Phys. 06, 008 (2006). hep-ph/0603155

    ADS  Google Scholar 

  44. S. Davidson, S. Forte, P. Gambino, N. Rius, A. Strumia, J. High Energy Phys. 02, 037 (2002). hep-ph/0112302

    ADS  Google Scholar 

  45. K.S. McFarland, S.-O. Moch, in Proceedings of Mini-Workshop on Electroweak Precision Data and the Higgs Mass, Zeuthen, Germany, 28 February–1 March (2003). hep-ph/0306052

    Google Scholar 

  46. Tevatron Electroweak Working Group and CDF and D0 Collaborations, arxiv:0908.1374

  47. Tevatron Electroweak Working Group, arxiv:1003.2826

  48. CDF and D0 Collaborations, arxiv:1007.3178

  49. P. Skands, D. Wicke, Eur. Phys. J. C 52, 133 (2007). hep-ph/0703081

    ADS  Google Scholar 

  50. D. Wicke, P.Z. Skands, arxiv:0807.3248

  51. A.H. Hoang, A. Jain, I. Scimemi, I.W. Stewart, arxiv:0803.4214

  52. A.H. Hoang, I.W. Stewart, arxiv:0808.0222

  53. U. Langenfeld, S. Moch, P. Uwer, Phys. Rev. D 80, 054009 (2009). arxiv:0906.5273

    ADS  Google Scholar 

  54. K. Melnikov, T.V. Ritbergen, Phys. Lett. B 482, 99 (2000). hep-ph/9912391

    ADS  Google Scholar 

  55. D0 Collaboration, V.M. Abazov et al., arxiv:1101.0124

  56. D0 Collaboration, V.M. Abazov et al., arxiv:1104.2887

  57. N. Kidonakis, Phys. Rev. D 82, 114030 (2010). arxiv:1009.4935

    ADS  Google Scholar 

  58. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011). arxiv:1010.4180

    ADS  Google Scholar 

  59. K. Hagiwara, A.D. Martin, D. Nomura, T. Teubner, Phys. Lett. B 649, 173 (2007). hep-ph/0611102

    ADS  Google Scholar 

  60. R. Barate et al. (The ALEPH, DELPHI, L3, OPAL Collaborations, LEP Working Group for Higgs Boson Searches), Phys. Lett. B 565, 61 (2003). hep-ex/0306033

    ADS  Google Scholar 

  61. CDF and D0 Collaborations, arxiv:1007.4587

  62. T. Aaltonen et al. (CDF and D0 Collaborations), arxiv:1103.3233

  63. G. Aad et al. (ATLAS Collaboration), arxiv:1106.2748, CERN-PH-EP-2011-076 (2011)

  64. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 699, 25 (2011). arxiv:1102.5429

    ADS  Google Scholar 

  65. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71, 1554 (2011). arxiv:1007.1727

    ADS  Google Scholar 

  66. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, J. Phys. G 38, 085003 (2011). arxiv:1105.3149

    ADS  Google Scholar 

  67. M. Baak et al. (Gfitter Group), Updated results at: http://cern.ch/gfitter

  68. G. Altarelli, R. Barbieri, F. Caravaglios, Nucl. Phys. B 405, 3 (1993)

    ADS  Google Scholar 

  69. G. Altarelli, R. Barbieri, F. Caravaglios, Int. J. Mod. Phys. A 13, 1031 (1998). hep-ph/9712368

    ADS  Google Scholar 

  70. C.P. Burgess, S. Godfrey, H. Konig, D. London, I. Maksymyk, Phys. Rev. D 49, 6115 (1994). hep-ph/9312291

    ADS  Google Scholar 

  71. C.P. Burgess, S. Godfrey, H. Konig, D. London, I. Maksymyk, Phys. Lett. B 326, 276 (1994). hep-ph/9307337

    ADS  Google Scholar 

  72. R. Barbieri, A. Pomarol, R. Rattazzi, A. Strumia, Nucl. Phys. B 703, 127 (2004). hep-ph/0405040

    ADS  Google Scholar 

  73. C.P. Burgess, Pramana 45, S47 (1995). hep-ph/9411257

    Google Scholar 

  74. A. Arhrib, W.-S. Hou, Eur. Phys. J. C 27, 555 (2003). hep-ph/0211267

    ADS  Google Scholar 

  75. W.-S. Hou, M. Nagashima, A. Soddu, Phys. Rev. D 76, 016004 (2007). hep-ph/0610385

    ADS  Google Scholar 

  76. W.-S. Hou, M. Nagashima, A. Soddu, Phys. Rev. D 72, 115007 (2005). hep-ph/0508237

    ADS  Google Scholar 

  77. W.-S. Hou, H.-n. Li, S. Mishima, M. Nagashima, Phys. Rev. Lett. 98, 131801 (2007). hep-ph/0611107

    ADS  Google Scholar 

  78. A. Soni, A.K. Alok, A. Giri, R. Mohanta, S. Nandi, Phys. Lett. B 683, 302 (2010). arxiv:0807.1971

    ADS  Google Scholar 

  79. F.J. Botella, G.C. Branco, M. Nebot, J. Phys. Conf. Ser. 171, 012058 (2009).

    ADS  Google Scholar 

  80. O. Eberhardt, A. Lenz, J. Rohrwild, Phys. Rev. D 82, 095006 (2010). arxiv:1005.3505

    ADS  Google Scholar 

  81. M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild, Phys. Rev. D 79, 113006 (2009). arxiv:0902.4883

    ADS  Google Scholar 

  82. A. Soni, A.K. Alok, A. Giri, R. Mohanta, S. Nandi, Phys. Rev. D 82, 033009 (2010). arxiv:1002.0595

    ADS  Google Scholar 

  83. A.J. Buras et al., J. High Energy Phys. 09, 106 (2010). arxiv:1002.2126

    ADS  Google Scholar 

  84. H. Lacker, A. Menzel, J. High Energy Phys. 07, 006 (2010). arxiv:1003.4532

    ADS  Google Scholar 

  85. J. Erler, P. Langacker, Phys. Rev. Lett. 105, 031801 (2010). arxiv:1003.3211

    ADS  Google Scholar 

  86. P.H. Frampton, P.Q. Hung, M. Sher, Phys. Rep. 330, 263 (2000). hep-ph/9903387

    ADS  Google Scholar 

  87. B. Holdom, Phys. Rev. D 54, 721 (1996). hep-ph/9602248

    ADS  Google Scholar 

  88. B. Holdom, J. High Energy Phys. 0608, 076 (2006). hep-ph/0606146

    ADS  Google Scholar 

  89. H.-J. He, N. Polonsky, S.-f. Su, Phys. Rev. D 64, 053004 (2001). hep-ph/0102144

    ADS  Google Scholar 

  90. G.D. Kribs, T. Plehn, M. Spannowsky, T.M.P. Tait, Phys. Rev. D 76, 075016 (2007). arxiv:0706.3718

    ADS  Google Scholar 

  91. V.A. Novikov, L.B. Okun, A.N. Rozanov, M.I. Vysotsky, JETP Lett. 76, 127 (2002). hep-ph/0203132

    ADS  Google Scholar 

  92. M.S. Chanowitz, Phys. Rev. D 82, 035018 (2010). arxiv:1007.0043

    ADS  Google Scholar 

  93. M.S. Chanowitz, Phys. Rev. D 79, 113008 (2009). arxiv:0904.3570

    ADS  Google Scholar 

  94. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 701, 204 (2011). 1102.4746

    ADS  Google Scholar 

  95. J. Conway et al. (CDF Collaboration), CDF/PUB/TOP/PUBLIC/ 10395 (2011)

  96. T. Aaltonen et al. (CDF Collaboration), arxiv:1101.5728

  97. C.J. Flacco, D. Whiteson, M. Kelly, arxiv:1101.4976

  98. C.J. Flacco, D. Whiteson, T.M.P. Tait, S. Bar-Shalom, Phys. Rev. Lett. 105, 111801 (2010). arxiv:1005.1077

    ADS  Google Scholar 

  99. L3 Collaboration, P. Achard et al., Phys. Lett. B 517, 75 (2001). hep-ex/0107015

    ADS  Google Scholar 

  100. M. Hashimoto, Phys. Rev. D 81, 075023 (2010). arxiv:1001.4335

    ADS  Google Scholar 

  101. J.R. Espinosa, G.F. Giudice, A. Riotto, J. Cosmol. Astropart. Phys. 0805, 002 (2008). arxiv:0710.2484

    ADS  Google Scholar 

  102. J. Ellis, J. Espinosa, G. Giudice, A. Hoecker, A. Riotto, Phys. Lett. B 679, 369 (2009). arxiv:0906.0954

    ADS  Google Scholar 

  103. T. Aaltonen et al. (CDF and D0 Collaborations), arxiv:1005.3216

  104. H.E. Haber, G.L. Kane, T. Sterling, Nucl. Phys. B 161, 493 (1979)

    ADS  Google Scholar 

  105. H.E. Haber, D. O’Neil, Phys. Rev. D 74, 015018 (2006). hep-ph/0602242

    ADS  Google Scholar 

  106. S. Davidson, H.E. Haber, Phys. Rev. D 72, 035004 (2005). hep-ph/0504050

    ADS  Google Scholar 

  107. J.M. Cline, P.-A. Lemieux, Phys. Rev. D 55, 3873 (1997). hep-ph/9609240

    ADS  Google Scholar 

  108. J.F. Gunion, H.E. Haber, G.L. Kane, S. Dawson, hep-ph/9302272

  109. L.F. Abbott, P. Sikivie, M.B. Wise, Phys. Rev. D 21, 1393 (1980)

    ADS  Google Scholar 

  110. O. Deschamps et al., Phys. Rev. D 82, 073012 (2009). arxiv:0907.5135

    ADS  Google Scholar 

  111. A. Heister et al. (ALEPH Collaboration, Phys. Lett. B 543, 1 (2002). hep-ex/0207054

    Google Scholar 

  112. P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B 525, 17 (2002). hep-ex/0201023

    ADS  Google Scholar 

  113. P. Achard et al. (L3 Collaboration), Phys. Lett. B 575, 208 (2003). hep-ex/0309056

    ADS  Google Scholar 

  114. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 7, 407 (1999). hep-ex/9811025

    ADS  Google Scholar 

  115. LEP Higgs Working Group for Higgs boson searches, hep-ex/0107031

  116. H.E. Haber, hep-ph/9306207

  117. H.E. Haber, H.E. Logan, Phys. Rev. D 62, 015011 (2000). hep-ph/9909335

    ADS  Google Scholar 

  118. C.D. Froggatt, R.G. Moorhouse, I.G. Knowles, Phys. Rev. D 45, 2471 (1992)

    ADS  Google Scholar 

  119. R. Barbieri, L.J. Hall, V.S. Rychkov, Phys. Rev. D 74, 015007 (2006). hep-ph/0603188

    ADS  Google Scholar 

  120. N.G. Deshpande, E. Ma, Phys. Rev. D 18, 2574 (1978)

    ADS  Google Scholar 

  121. L. Lopez Honorez, E. Nezri, J.F. Oliver, M.H.G. Tytgat, J. Cosmol. Astropart. Phys. 0702, 028 (2007). hep-ph/0612275

    ADS  Google Scholar 

  122. M. Gustafsson, E. Lundstrom, L. Bergstrom, J. Edsjo, Phys. Rev. Lett. 99, 041301 (2007). astro-ph/0703512

    ADS  Google Scholar 

  123. E. Lundstrom, M. Gustafsson, J. Edsjo, Phys. Rev. D 79, 035013 (2009). 0810.3924

    ADS  Google Scholar 

  124. T. Hambye, F.S. Ling, L. Lopez Honorez, J. Rocher, J. High Energy Phys. 07, 090 (2009). 0903.4010

    ADS  Google Scholar 

  125. S. Andreas, M.H. Tytgat, Q. Swillens, J. Cosmol. Astropart. Phys. 0904, 004 (2009). 0901.1750

    ADS  Google Scholar 

  126. E.M. Dolle, S. Su, Phys. Rev. D 80, 055012 (2009). 0906.1609

    ADS  Google Scholar 

  127. L. Lopez Honorez, C.E. Yaguna, J. High Energy Phys. 09, 046 (2010). 1003.3125

    ADS  Google Scholar 

  128. L. Lopez Honorez, C.E. Yaguna, J. Cosmol. Astropart. Phys. 1101, 002 (2011). 1011.1411

    ADS  Google Scholar 

  129. D.B. Kaplan, H. Georgi, Phys. Lett. B 136, 183 (1984)

    ADS  Google Scholar 

  130. D.B. Kaplan, H. Georgi, S. Dimopoulos, Phys. Lett. B 136, 187 (1984)

    ADS  Google Scholar 

  131. H. Georgi, D.B. Kaplan, P. Galison, Phys. Lett. B 143, 152 (1984)

    ADS  Google Scholar 

  132. H. Georgi, D.B. Kaplan, Phys. Lett. B 145, 216 (1984)

    ADS  Google Scholar 

  133. N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Lett. B 513, 232 (2001). hep-ph/0105239

    MathSciNet  MATH  ADS  Google Scholar 

  134. N. Arkani-Hamed, A.G. Cohen, T. Gregoire, J.G. Wacker, J. High Energy Phys. 08, 020 (2002). hep-ph/0202089

    MathSciNet  ADS  Google Scholar 

  135. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, J. High Energy Phys. 07, 034 (2002). hep-ph/0206021

    MathSciNet  ADS  Google Scholar 

  136. C. Csaki, J. Hubisz, G.D. Kribs, P. Meade, J. Terning, Phys. Rev. D 68, 035009 (2003). hep-ph/0303236

    ADS  Google Scholar 

  137. M. Perelstein, M.E. Peskin, A. Pierce, Phys. Rev. D 69, 075002 (2004). hep-ph/0310039

    ADS  Google Scholar 

  138. C. Csaki, J. Hubisz, G.D. Kribs, P. Meade, J. Terning, Phys. Rev. D 67, 115002 (2003). hep-ph/0211124

    ADS  Google Scholar 

  139. J.L. Hewett, F.J. Petriello, T.G. Rizzo, J. High Energy Phys. 10, 062 (2003). hep-ph/0211218

    ADS  Google Scholar 

  140. T. Han, H.E. Logan, B. McElrath, L.-T. Wang, Phys. Rev. D 67, 095004 (2003). hep-ph/0301040

    ADS  Google Scholar 

  141. H.-C. Cheng, I. Low, J. High Energy Phys. 09, 051 (2003). hep-ph/0308199

    ADS  Google Scholar 

  142. H.-C. Cheng, I. Low, J. High Energy Phys. 08, 061 (2004). hep-ph/0405243

    MathSciNet  ADS  Google Scholar 

  143. J. Hubisz, P. Meade, Phys. Rev. D 71, 035016 (2005). hep-ph/0411264

    ADS  Google Scholar 

  144. J. Hubisz, P. Meade, A. Noble, M. Perelstein, J. High Energy Phys. 01, 135 (2006). hep-ph/0506042

    ADS  Google Scholar 

  145. M. Asano, S. Matsumoto, N. Okada, Y. Okada, Phys. Rev. D 75, 063506 (2007). hep-ph/0602157

    ADS  Google Scholar 

  146. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998). hep-ph/9803315

    ADS  Google Scholar 

  147. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 436, 257 (1998). hep-ph/9804398

    ADS  Google Scholar 

  148. D.J. Kapner et al., Phys. Rev. Lett. 98, 021101 (2007). hep-ph/0611184

    ADS  Google Scholar 

  149. G.F. Giudice, J.D. Wells (Particle Data Group), J. Phys. G 37, 075021 (2010)

    ADS  Google Scholar 

  150. S. Hannestad, G.G. Raffelt, Phys. Rev. Lett. 88, 071301 (2002). hep-ph/0110067

    ADS  Google Scholar 

  151. G.F. Giudice, R. Rattazzi, J.D. Wells, Nucl. Phys. B 544, 3 (1999). hep-ph/9811291

    ADS  Google Scholar 

  152. T. Han, J.D. Lykken, R.-J. Zhang, Phys. Rev. D 59, 105006 (1999). hep-ph/9811350

    MathSciNet  ADS  Google Scholar 

  153. J.L. Hewett, Phys. Rev. Lett. 82, 4765 (1999). hep-ph/9811356

    ADS  Google Scholar 

  154. G.F. Giudice, A. Strumia, Nucl. Phys. B 663, 377 (2003). hep-ph/0301232

    MATH  ADS  Google Scholar 

  155. R. Contino, L. Pilo, R. Rattazzi, A. Strumia, J. High Energy Phys. 06, 005 (2001). hep-ph/0103104

    MathSciNet  ADS  Google Scholar 

  156. G. Landsberg, arxiv:0808.1867

  157. S. Ask, hep-ex/0410004

  158. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 05, 085 (2011). 1103.4279

    ADS  Google Scholar 

  159. G. Aad et al. (ATLAS Collaboration), arxiv:1106.5327, CERN-PH-EP-2011-090 (2011)

  160. G.W. Bennett et al. (Muon G-2 Collaboration), Phys. Rev. D 73, 072003 (2006). hep-ex/0602035

    ADS  Google Scholar 

  161. I. Antoniadis, Phys. Lett. B 246, 377 (1990)

    MathSciNet  ADS  Google Scholar 

  162. T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001). hep-ph/0012100

    ADS  Google Scholar 

  163. D. Hooper, S. Profumo, Phys. Rep. 453, 29 (2007). hep-ph/0701197

    ADS  Google Scholar 

  164. G. Servant, T.M. Tait, Nucl. Phys. B 650, 391 (2003). hep-ph/0206071

    ADS  Google Scholar 

  165. F. Burnell, G.D. Kribs, Phys. Rev. D 73, 015001 (2006). hep-ph/0509118

    ADS  Google Scholar 

  166. K. Kong, K.T. Matchev, J. High Energy Phys. 0601, 038 (2006). hep-ph/0509119

    ADS  Google Scholar 

  167. C. Macesanu, C.D. McMullen, S. Nandi, Phys. Lett. B 546, 253 (2002). hep-ph/0207269

    ADS  Google Scholar 

  168. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 106, 121803 (2011). 1012.4272

    ADS  Google Scholar 

  169. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 105, 221802 (2010). arxiv:1008.2133

    ADS  Google Scholar 

  170. H.-C. Cheng, K.T. Matchev, M. Schmaltz, Phys. Rev. D 66, 056006 (2002). hep-ph/0205314

    ADS  Google Scholar 

  171. M. Masip, A. Pomarol, Phys. Rev. D 60, 096005 (1999). hep-ph/9902467

    ADS  Google Scholar 

  172. T.G. Rizzo, J.D. Wells, Phys. Rev. D 61, 016007 (2000). hep-ph/9906234

    ADS  Google Scholar 

  173. T. Appelquist, H.-U. Yee, Phys. Rev. D 67, 055002 (2003). hep-ph/0211023

    ADS  Google Scholar 

  174. I. Gogoladze, C. Macesanu, Phys. Rev. D 74, 093012 (2006). hep-ph/0605207

    ADS  Google Scholar 

  175. T. Flacke, D. Hooper, J. March-Russell, Phys. Rev. D 73, 095002 (2006). hep-ph/0509352. Erratum: Phys. Rev. D 74, 019902 (2006)

    ADS  Google Scholar 

  176. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999). hep-ph/9905221

    MathSciNet  MATH  ADS  Google Scholar 

  177. K. Agashe, A. Delgado, R. Sundrum, Ann. Phys. 304, 145 (2003). hep-ph/0212028

    MATH  ADS  Google Scholar 

  178. C. Csaki, J. Erlich, J. Terning, Phys. Rev. D 66, 064021 (2002). hep-ph/0203034

    MathSciNet  ADS  Google Scholar 

  179. A. Delgado, A. Falkowski, J. High Energy Phys. 05, 097 (2007). hep-ph/0702234

    ADS  Google Scholar 

  180. S. Casagrande, F. Goertz, U. Haisch, M. Neubert, T. Pfoh, J. High Energy Phys. 0810, 094 (2008). arxiv:0807.4937

    ADS  Google Scholar 

  181. M.S. Carena, A. Delgado, E. Ponton, T.M.P. Tait, C.E.M. Wagner, Phys. Rev. D 68, 035010 (2003). hep-ph/0305188

    ADS  Google Scholar 

  182. K. Agashe, A. Delgado, M.J. May, R. Sundrum, J. High Energy Phys. 0308, 050 (2003). hep-ph/0308036

    ADS  Google Scholar 

  183. J.A. Cabrer, G. von Gersdorff, M. Quiros, arxiv:1104.3149

  184. R. Rattazzi, A. Zaffaroni, J. High Energy Phys. 04, 021 (2001). hep-th/0012248

    MathSciNet  ADS  Google Scholar 

  185. C. Delaunay, O. Gedalia, S.J. Lee, G. Perez, E. Ponton, Phys. Rev. D 83, 115003 (2011). 1007.0243

    ADS  Google Scholar 

  186. C. Delaunay, O. Gedalia, S.J. Lee, G. Perez, E. Ponton, 1101.2902

  187. CMS Collaboration, CMS-EXO-10-019 (2011)

  188. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 104, 241802 (2010). arxiv:1004.1826

    ADS  Google Scholar 

  189. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83, 011102 (2011). arxiv:1012.2795

    ADS  Google Scholar 

  190. T. Aaltonen et al. (CDF Collaboration), arxiv:1103.4650

  191. S. Weinberg, Phys. Rev. D 19, 1277 (1979) (for original paper see Phys. Rev. D 13, 974–996, 1976)

    ADS  Google Scholar 

  192. L. Susskind, Phys. Rev. D 20, 2619 (1979)

    ADS  Google Scholar 

  193. V. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 98, 221801 (2007). hep-ex/0612013

    ADS  Google Scholar 

  194. K. Lane, hep-ph/0202255

  195. R. Chivukula, M.J. Dugan, M. Golden, Phys. Lett. B 292, 435 (1992). hep-ph/9207249

    ADS  Google Scholar 

  196. S.R. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2239 (1969)

    ADS  Google Scholar 

  197. J.R. Ellis, G.L. Fogli, E. Lisi, Phys. Lett. B 343, 282 (1995)

    ADS  Google Scholar 

  198. R. Sundrum, S.D. Hsu, Nucl. Phys. B 391, 127 (1993). hep-ph/9206225

    ADS  Google Scholar 

  199. D.D. Dietrich, F. Sannino, K. Tuominen, Phys. Rev. D 72, 055001 (2005). hep-ph/0505059

    ADS  Google Scholar 

  200. O. Mintakevich, J. Sonnenschein, J. High Energy Phys. 0907, 032 (2009). arxiv:0905.3284

    MathSciNet  ADS  Google Scholar 

  201. J. Hirn, V. Sanz, Phys. Rev. Lett. 97, 121803 (2006). hep-ph/0606086

    ADS  Google Scholar 

  202. J. Hirn, A. Martin, V. Sanz, Phys. Rev. D 78, 075026 (2008). arxiv:0807.2465

    ADS  Google Scholar 

  203. D. Kennedy, B. Lynn, Nucl. Phys. B 322, 1 (1989). Revised version

    ADS  Google Scholar 

  204. G. Burgers, F. Jegerlehner, Z Physics at LEP 1, Vol. 1, CERN 89-08, 55

Download references

Acknowledgements

We are indebted to the LEP-Higgs and Tevatron-NPH working groups for providing the numerical CLs+b results of their direct Higgs-boson searches. It is a pleasure to thank Alexander Lenz for instructive discussions on extended fermion generations. We are grateful to Hong-Jian He und Shu-fang Su for their help on the implementation of the 2HDM oblique corrections. We thank Gian Giudice for helpful correspondence on large extra dimensions. We also thank Kenneth Lane for his helpful comments and suggestions on the technicolour studies presented here. This work is funded by the German Research Foundation (DFG) in the Collaborative Research Centre (SFB) 676 “Particles, Strings and the Early Universe” located in Hamburg. A.H. thanks the Aspen Center for Physics, which is supported by an NSF grant, for its hospitality during the finalisation of this paper.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to A. Hoecker.

Appendix A: Oblique parameter formalism

Appendix A: Oblique parameter formalism

1.1 A.1 Absorption of radiative corrections

Oblique corrections can generally be absorbed into the fundamental constants occurring at the tree level of the SM. Kennedy and Lynn [203] have shown that this statement is general to all vacuum polarisation orders. In this appendix we illustrate the absorption process with some explicit examples.

The effects of oblique corrections on fermion scattering can be determined by examining how the gauge-boson vacuum polarisation functions

$$ \varPi_{ab}^{\mu\nu}(q)=\varPi_{ab} \bigl(q^{2}\bigr)g^{\mu\nu} + \bigl(q^{\mu}q^{\nu}\ \textrm{terms}\bigr), $$
(50)

with a,b=γ,W,Z, appear in the electroweak observables of interest.Footnote 27 The functions (50) have an SM and an unknown new physics component: \(\varPi_{ab}^{\mu\nu}(q^{2})=\varPi_{ab}^{SM}(q^{2}) + \delta\varPi_{ab}^{NP}(q^{2})\).

For the W and Z bosons one finds the following mass corrections to the tree-level quantities:Footnote 28

$$ \begin{array} {l} M_{W}^{2} \equiv M_{W}^{2}\bigl(M_{W}^{2}\bigr) = M_{W}^{(0)2} + \varPi_{WW}\bigl(M_{W}^{2} \bigr), \\[6pt] M_{Z}^{2} \equiv M_{Z}^{2} \bigl(M_{Z}^{2}\bigr) = M_{Z}^{(0)2} + \varPi_{ZZ}\bigl(M_{Z}^{2}\bigr), \end{array} $$
(51)

where the vacuum polarisation functions are evaluated at the poles of the propagators.

For the massless photon one has

$$ \varPi_{\gamma\gamma}(0)=\varPi_{\gamma Z}(0)=0. $$
(52)

The impact on the electromagnetic constant α is obtained by taking the leading-order photon propagator plus the first-order correction. Together these yield

$$ \frac{-ie^{2}}{q^{2}} \biggl(1+i\varPi_{\gamma\gamma}\bigl(q^{2}\bigr) \cdot\frac{-i}{q^{2}} \biggr). $$
(53)

The observed value of the electric charge is then found by taking the limit q 2→0 of this expression

$$ 4\pi\alpha_{*}(0) \equiv e_{*}^{2}(0)=\frac{g^{2}g^{\prime 2}}{g^{2}+g^{\prime 2}} \bigl(1+ \varPi_{\gamma\gamma}^{\prime}(0) \bigr), $$
(54)

where

$$ \varPi_{\gamma\gamma}^{\prime}(0)=\frac{d\varPi_{\gamma\gamma}}{dq^{2}}\bigg|_{q^{2}=0}. $$
(55)

The weak mixing angle s W appears in the interactions of Z bosons to fermions, and is shifted by the vacuum polarisation amplitude Π . The corrections change a Z into a photon that decays to two fermions, with coupling strength Qe, leading to the contribution

$$ i\varPi_{Z\gamma}\bigl(q^{2}\bigr)\frac{-i}{q^{2}}\cdot(ieQ). $$
(56)

Including this correction, the Z-fermion interaction takes the form

$$ i\sqrt{g^{2}+g^{\prime 2}} \bigl(T^{3}-s_{*}^{2}Q \bigr), $$
(57)

with

$$ s_{*}^{2}\bigl(M_{Z}^{2}\bigr) = s_{W}^{(0)\,2} - \frac{e}{\sqrt{g^{2}+g^{\prime 2}}} \frac{\varPi_{Z\gamma}(M_{Z}^{2})}{M_{Z}^{2}}, $$
(58)

as evaluated at \(q^{2}=M_{Z}^{2}\).

The Fermi constant, obtained from muon decays, as mediated by W propagator, receives the first-order correction from the W vacuum polarisation function

$$ \frac{-ig^{2}}{q^{2}-M_{W}^{2}} \biggl(1+i\varPi_{WW}\bigl(q^{2}\bigr) \frac{-i}{q^{2}-M_{W}^{2}} \biggr). $$
(59)

At q 2=0, the observed Fermi constant process shifts to

$$ \frac{G_{F*}}{\sqrt{2}}=\frac{1}{2v^{2}} \biggl(1- \frac{\varPi_{WW}(0)}{M_{W}^{2}} \biggr). $$
(60)

These examples illustrate that oblique corrections can be absorbed into the fundamental constants occurring of the SM. This conclusion is applied in the following section.

1.2 A.2 Introduction of the S, T, U parameters

In the SM with a single Higgs doublet the relationship between the neutral and charged weak couplings is fixed by the ratio of W and Z boson masses

$$ \rho = \frac{M_{W}^{2}}{M_{Z}^{2}\cos^{2}\theta _{\scriptscriptstyle W}}, $$
(61)

where ρ 0=1 at tree level. Generally one writes

$$ \rho = 1+\Delta\rho, $$
(62)

where Δρ captures the radiative corrections to the gauge-boson propagators and vertices. Inserting the first-order mass corrections of Eqs. (51) into Eq. (61) gives

$$ \Delta\rho = \frac{\varPi_{WW}(0)}{M_{W}^{2}}-\frac{\varPi_{ZZ}(0)}{M_{Z}^{2}}. $$
(63)

The tree-level vector and axial-vector couplings occurring in the Z boson to fermion-antifermion vertex \(i\overline{f}\gamma_{\mu}({g_{{\scriptscriptstyle V},f}^{(0)}}+{g_{{\scriptscriptstyle V},f}^{(0)}}\gamma_{5})f Z_{\mu}\) are given by

(64)
(65)

where Q f and \(I^{f}_{3}\) are respectively the charge and the third component of the weak isospin. In the (minimal) SM, containing only one Higgs doublet, the weak mixing angle is defined by

$$ \sin^{2}\theta _{\scriptscriptstyle W}= 1-\frac{M_{W}^2}{M_{Z}^2}. $$
(66)

Electroweak radiative corrections modify these relations, leading to the effective weak mixing angle and effective couplings

(67)
(68)
(69)

where the radiative corrections are absorbed in the form factors \(\kappa ^{f}_{Z}=1+\Delta \kappa ^{f}_{Z}\) and \(\rho ^{f}_{Z}=1+\Delta \rho ^{f}_{Z}\).

Electroweak unification leads to a relation between weak and electromagnetic couplings, which at tree level reads

$$ {G_{\scriptscriptstyle F}}= \frac{\pi \alpha}{\sqrt{2} (M_{W}^{(0)} )^2 (1-\frac{(M^{(0)}_{W})^2}{M_{Z}^2} )}. $$
(70)

The radiative corrections are parametrised by multiplying the r.h.s. of Eq. (70) with the form factor (1−Δr)−1. Using Eq. (66) and resolving for M W gives

$$ M_{W}^2 = \frac{M_{Z}^2}{2} \Biggl(1+\sqrt{1-\frac{\sqrt{8}\pi\alpha(1+\Delta r)}{{G_{\scriptscriptstyle F}}{M_{Z}^2}}}\,\Biggr). $$
(71)

An extra correction is required for the \(Z\rightarrow b\overline{b}\) decay vertex. The bottom quark is the only fermion that receives unsuppressed vertex corrections from the top quark. These corrections turn out to be significant—at the level of \(G_{F}m_{t}^{2}\)—and must be accounted for. The vector and axial couplings receive an extra contribution ε b

(72)

where ε b contains all top-quark induced vertex corrections.

The entire dependence of the electroweak theory on m t and M H , arising from one-loop diagrams and higher, only enters through the four parameters Δκ, Δρ, Δr, and ε b . The quantities Δκ, Δρ, and Δr W are mostly sensitive to the absolute mass splittings between different weak-isospin partners. In practise this means the mass differences between the top and bottom quarks, and the Z and W bosons. For example, the dominant contributions to Δρ are [203]

(73)

exhibiting a quadratic dependence on the top mass, and a logarithmic dependence on the Higgs mass. Since M H >M Z >M W , ρ H is negative.

Ignoring terms proportional to lnm t /M Z and vertex corrections, which do not contain sizable terms containing M H and m t , the parameters on one-loop level can can be written as [204]:

(74)

All quantities are dominated by terms of \(G_{F}m_{t}^{2}\). Considering this term only, Δk, Δρ, Δr W are related as follows:

$$ \Delta r_{W} = \frac{c^{2}-s^{2}}{s^{2}} \Delta k=-\frac{c^{2}}{s^{2}} \Delta \rho. $$
(75)

Restoring the \(\ln\frac{m_{t}}{m_{z}}\) terms, the ε 1,2,3 parameters defined in Eqs. (6)–(8) on page 10 are given by

(76)

The SM subtraction results in the parameter set \(\hat{\varepsilon}\). In terms of propagator functions one has [36]

(77)

Equivalently, contributions to \(\hat{\varepsilon}_{b}\) are the NP vertex correction to \(Z\rightarrow b\overline{b}\). The S, T, U parameters expressed in terms of the \(\hat{\varepsilon}\) parameters read

$$ S = \frac{4s^{2}\hat{\varepsilon}_{3}}{\alpha(M_{Z}^{2})}, \qquad T = \frac{\hat{\varepsilon}_{1}}{\alpha(M_{Z}^{2})},\qquad U = \frac{-4s^{2}\hat{\varepsilon}_{2}}{\alpha(M_{Z}^{2})}. $$
(78)

Rights and permissions

Reprints and permissions

About this article

Cite this article

The Gfitter Group., Baak, M., Goebel, M. et al. Updated status of the global electroweak fit and constraints on new physics. Eur. Phys. J. C 72, 2003 (2012). https://doi.org/10.1140/epjc/s10052-012-2003-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2003-4

Keywords

Navigation