Skip to main content
Log in

Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The two-dimensional atomically thin insulator hexagonal boron nitride (h-BN) constitutes a new paradigm in tunnel based devices. A large band gap, along with its atomically flat nature without dangling bonds or interface trap states, makes it an ideal candidate for tunnel spin transport in spintronic devices. Here, we demonstrate the tunneling of spin-polarized electrons through large area monolayer h-BN prepared by chemical vapor deposition in magnetic tunnel junctions. In ferromagnet/h-BN/ferromagnet heterostructures fabricated on a chip scale, we show tunnel magnetoresistance at room temperature. Measurements at different bias voltages and on multiple devices with different ferromagnetic electrodes establish the spin polarized tunneling using h-BN barriers. These results open the way for integration of 2D monolayer insulating barriers in active spintronic devices and circuits operating at ambient temperature, and for further exploration of their properties and prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waser, R. Nanoelectronics and Information Technology; 3rd edn, Wiley-VCH, 2012.

    Google Scholar 

  2. Fert, A. Nobel lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 2008, 80, 1517–1530.

    Article  Google Scholar 

  3. Wood, R. Future hard disk drive systems. J. Magn. Magn. Mater. 2009, 321, 555–561.

    Article  Google Scholar 

  4. Nagasaka, K. CPP-GMR technology for magnetic read heads of future high-density recording systems. J. Magn. Magn. Mater. 2009, 321, 508–511.

    Article  Google Scholar 

  5. Yuasa, S.; Djayaprawira, D. D. Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO barrier. J. Phys. D: Appl. Phys. 2007, 40, R337–R354.

    Article  Google Scholar 

  6. Gao, K. Z.; Heinonen, O.; Chen, Y. H. Read and write processes, and head technology for perpendicular recording. J. Magn. Magn. Mater. 2009, 321, 495–507.

    Article  Google Scholar 

  7. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451–10453.

    Article  Google Scholar 

  8. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  Google Scholar 

  9. Karpan, V. M.; Giovannetti, G.; Khomyakov, P. A.; Talanana, M.; Starikov, A. A.; Zwierzycki, M.; Van Den Brink, J.; Brocks, G.; Kelly, P. J. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 2007, 99, 176602.

    Article  Google Scholar 

  10. Banerjee, T.; Van Der Wiel, W. G.; Jansen, R. Spin injection and perpendicular spin transport in graphite nanostructures. Phys. Rev. B 2010, 81, 214409.

    Article  Google Scholar 

  11. Cobas, E.; Friedman, A. L.; van’t Erve, O. M. J.; Robinson, J. T.; Jonker, B. T. Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions. Nano Lett. 2012, 12, 3000–3004.

    Article  Google Scholar 

  12. Chen, J.-J.; Meng, J.; Zhou, Y.-B.; Wu, H.-C.; Bie, Y.-Q.; Liao, Z.-M.; Yu, D.-P. Layer-by-layer assembly of vertically conducting graphene devices. Nat. Commun. 2013, 4, 1921.

    Article  Google Scholar 

  13. Li, W.; Xue, L.; Abruña, H. D.; Ralph, D. C. Magnetic tunnel junctions with single-layer-graphene tunnel barriers. Phys. Rev. B 2014, 89, 184418.

    Article  Google Scholar 

  14. Iqbal, M. Z.; Iqbal, M. W.; Lee, J. H.; Kim, Y. S.; Chun, S-H.; Eom, J. Spin valve effect of NiFe/graphene/NiFe junctions. Nano Res. 2013, 6, 373–380.

    Article  Google Scholar 

  15. Park, J-H.; Lee, H-J. Out-of-plane magnetoresistance in ferromagnet/graphene/ferromagnet spin-valve junctions. Phys. Rev. B 2014, 89, 165417.

    Article  Google Scholar 

  16. Dlubak, B.; Martin, M-B.; Weatherup, R. S.; Yang, H.; Deranlot, C.; Blume, R.; Schloegl, R.; Fert, A.; Anane, A.; Hofmann, S. et al. Graphene-passivated nickel as an oxidation-resistant electrode for spintronics. ACS Nano 2012, 6, 10930–10934.

    Google Scholar 

  17. Singh, A. K.; Eom, J. Negative magnetoresistance in vertical single layer graphene spin valve at room temperature. ACS Appl. Mater. Interfaces 2014, 6, 2493–2496.

    Article  Google Scholar 

  18. Martin, M-B.; Dlubak, B.; Weatherup, R. S.; Yang, H.; Deranlot, C.; Bouzehouane, K.; Petroff, F.; Anane, A.; Hofmann, S.; Robertson, J. et al. Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes. ACS Nano 2014, 8, 7890–7895.

    Article  Google Scholar 

  19. Friedman, A. L.; van’t Erve, O. M. J.; Li, C. H.; Robinson, J. T.; Jonker, B. T. Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport. Nat. Commun. 2014, 5, 3161.

    Article  Google Scholar 

  20. Godel, F.; Venkata Kamalakar, M.; Doudin, B.; Majjad, H.; Henry, Y.; Halley, D.; Dayen, J.-F. Voltage-controlled inversion of tunnel magnetoresistance in epitaxial Nickel/Graphene/MgO/Cobalt junctions. http://arxiv.org/abs/1410.1865.

  21. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  Google Scholar 

  22. Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 232104.

    Article  Google Scholar 

  23. Lee, G-H.; Yu, Y-J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.

    Article  Google Scholar 

  24. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.

    Article  Google Scholar 

  25. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.

    Article  Google Scholar 

  26. Karpan, V. M.; Khomyakov, P. A.; Giovannetti, G.; Starikov, A. A.; Kelly, P. J. Ni(111)|graphene|h-BN junctions as ideal spin injectors. Phys. Rev. B 2011, 84, 153406.

    Article  Google Scholar 

  27. Yazyev, O. V.; Pasquarello, A. Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride. Phys. Rev. B 2009, 80, 035408.

    Article  Google Scholar 

  28. Hu, M. L.; Yu, Z. Z.; Zhang, K. W.; Sun, L. Z.; Zhong, J. X. Tunneling magnetoresistance of bilayer hexagonal boron nitride and its linear response to external uniaxial strain. J. Phys. Chem. C 2011, 115, 8260–8264.

    Article  Google Scholar 

  29. Yamaguchi, T.; Inoue, Y. Masubuchi, S.; Morikawa, S.; Onuki, M.; Watanabe, K.; Taniguchi, T.; Moriya, R.; Machida T. Electrical spin injection into graphene through monolayer hexagonal boron nitride. Appl. Phys. Exp. 2013, 6, 073001.

    Article  Google Scholar 

  30. Kamalakar, M. V.; Dankert, A.; Bergsten, J.; Ive, T. Dash, S. P. Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride. Sci. Rep. 2014, 4, 6146.

    Article  Google Scholar 

  31. Fu, W. Y.; Makk, P.; Maurand, R.; Bräuninger, M.; Schönenberger, C. Large-scale fabrication of BN tunnel barriers for graphene spintronics. J. Appl. Phys. 2014, 116, 074306.

    Google Scholar 

  32. Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465–468.

    Article  Google Scholar 

  33. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 1975, 54, 225–226.

    Article  Google Scholar 

  34. Miyazaki, T.; Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 1995, 139, L231–L234.

    Article  Google Scholar 

  35. Moodera, J. S.; Kinder, L. R.; Wong, T. M.; Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 1995, 74, 3273–3276.

    Article  Google Scholar 

  36. Parkin, S. S. P.; Kaiser, C.; Panchula, A.; Rice, P. M.; Hughes, B.; Samant, M.; Yang, S-H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862–867.

    Article  Google Scholar 

  37. Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004, 3, 868–871.

    Article  Google Scholar 

  38. LeClair, P.; Swagten, H. J. M.; Kohlhepp, J. T.; van de Veerdonk, R. J. M.; de Jonge, W. J. M. Apparent spin polarization decay in Cu-dusted Co/Al2O3/Co tunnel junctions. Phys. Rev. Lett. 2000, 84, 2933–2936.

    Article  Google Scholar 

  39. Fitzsimmons, M. R.; Silva, T. J.; Crawford, T. M. Surface oxidation of permalloy thin films. Phys. Rev. B 2006, 73, 014420.

    Article  Google Scholar 

  40. Park, B. G.; Banerjee, T.; Lodder, J. C.; Jansen, R. Tunnel spin polarization versus energy for clean and doped Al2O3 barriers. Phys. Rev. Lett. 2007, 99, 217206.

    Article  Google Scholar 

  41. Patel, R. S.; Dash, S. P.; de Jong, M. P.; Jansen, R. Magnetic tunnel contacts to silicon with low-work-function ytterbium nanolayers. J. Appl. Phys. 2009, 106, 016107.

    Article  Google Scholar 

  42. Valenzuela, S. O.; Monsma, D. J.; Marcus, C. M.; Narayanamurti, V.; Tinkham, M. Spin polarized tunneling at finite bias. Phys. Rev. Lett. 2005, 94, 196601.

    Article  Google Scholar 

  43. Dankert, A.; Kamalakar, M. V.; Bergsten, J.; Dash, S. P. Spin transport and precession in graphene measured by nonlocal and three-terminal methods. Appl. Phys. Lett. 2014, 104, 192403.

    Article  Google Scholar 

  44. Dankert, A.; Dulal, R. S.; Dash, S. P. Efficient spin injection into silicon and the role of the schottky barrier. Sci. Rep. 2013, 3, 3196.

    Article  Google Scholar 

  45. Dankert, A.; Langouche, L.; Kamalakar, M. V.; Dash, S. P. High performance molybdenum disulfide field effect transistors with spin tunnel contacts. ACS Nano 2014, 8, 476–482.

    Article  Google Scholar 

  46. Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.

    Article  Google Scholar 

  47. Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    Google Scholar 

  48. Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater. 2010, 9, 430–435.

    Article  Google Scholar 

  49. Liu, Z.; Gong, Y. J.; Zhou, W.; Ma, L. L.; Yu, J. J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to André Dankert, R. S. Patel or Saroj P. Dash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dankert, A., Venkata Kamalakar, M., Wajid, A. et al. Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers. Nano Res. 8, 1357–1364 (2015). https://doi.org/10.1007/s12274-014-0627-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0627-4

Keywords

Navigation