Skip to main content
Log in

Photoelectric Properties of Film Composites Derived from Poly-N-Epoxypropylcarbazole and Zwitter-Ionic Dyes

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The photoconductive and photovoltaic properties of film composites derived from poly-Nepoxypropylcarbazole and additives of some indole derivative dyes, namely, squaraine, thiosquaraine, and croconaine, were studied. Such composites were found to have hole-type photoconductivity. The internal photoelectric effect is a function of the photogeneration of charge carriers from the dye molecules and transport of the holes along the donor fragments of the polymer matrix. The photovoltaic effect decreases in going from squarate to thiosquarate and croconate. This behavior is attributed to greater internal conversion due to the shift of the absorption region of the dyes in the near-IR spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. T. Yoshizawa (ed.), Handbook of Optical Metrology: Principles and Applications, CRC Press, Boca Raton, FL (2017).

  2. K. Leo, Elementary Processes in Organic Photovoltaics, Springer, Berlin (2016).

    Google Scholar 

  3. P. Kumar, Organic Solar Cells: Device Physics, Processing, Degradation and Prevention, CRC Press, Boca Raton, FL (2016).

    Book  Google Scholar 

  4. P. Deng, C. H. Y. Ho, Y. Lu, et al., Chem. Commun., 53, No. 22, 3249-3252 (2017), doi: https://doi.org/10.1039/C6CC09724C.

    Article  CAS  Google Scholar 

  5. V. A. Milichko, A. S. Shalin, I. S. Mukhin, et al., Usp. Fiz. Nauk, 186, No. 8, 801-852 (2016), doi: https://doi.org/10.3367/UFNr.2016.02.037703.

    Article  Google Scholar 

  6. E. A. Knyazeva and O. A. Rakitin, Usp. Khim., 85, No. 10, 1146-1183 (2016), doi: https://doi.org/10.1070/RCR4649.

    Article  CAS  Google Scholar 

  7. V. V. Rakitin and G. F. Novikov, Usp. Khim., 86, No. 2, 99-112 (2017), doi: https://doi.org/10.1070/RCR4633.

    Article  CAS  Google Scholar 

  8. G. Ding, J. Yuan, F. Jin, et al., Nano Energy, 36, 356-365 (2017), doi: https://doi.org/10.1016/j.nanoen.2017.04.061.

    Article  CAS  Google Scholar 

  9. E. V. Mokrinskaya, S. L. Studzinskii, V. A. Pavlov, et al., Khim. Vysok. Énerg., 51, No. 4, 278-283 (2017), doi: https://doi.org/10.7868/S0023119317040118.

    Article  Google Scholar 

  10. N. A. Davidenko, I. I. Davidenko, S. L. Studzinskii, et al., Khim. Vysok. Énerg., 49, No. 6, 463-468 (2015), doi: https://doi.org/10.7868/S0023119315060054.

    Article  Google Scholar 

  11. N. A. Davidenko, Yu. P. Getmanchuk, E. V. Mokrinskaya, et al., Appl. Opt., 53, No. 10, B242-B247 (2014), doi: https://doi.org/10.1364/AO.53.00B242.

    Article  CAS  PubMed  Google Scholar 

  12. N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, et al., Appl. Opt., 57, No. 8, 1832-1837 (2018), doi: https://doi.org/10.1364/AO.57.001832.

    Article  CAS  PubMed  Google Scholar 

  13. N. A. Davidenko and A. A. Ishchenko, Teor. Éksp. Khim., 38, No. 2, 84-102 (2002). [Theor. Exp. Chem., 38, No. 2, 88-108 (2002) (English translation)], doi: 10.1023/A:1016088000862.

  14. G. V. Bulavko and A. A. Ishchenko, Usp. Khim., 83, No. 7, 575-599 (2014), doi: https://doi.org/10.1070/RC2014v083n07ABEH004417.

    Article  CAS  Google Scholar 

  15. G. V. Bulavko, N. A. Davidenko, N. A. Derevyanko, et al., Teor. Éksp. Khim., 51, No. 1, 34-40 (2015). [Theor. Exp. Chem., 51, No. 1, 37-44 (2015) (English translation)], doi: 10.1007/s11237-015-9395-9.

  16. A. V. Kulinich, A. A. Ishchenko, G. V. Bulavko, and N. A. Davidenko, Teor. Éksp. Khim., 54, No. 3, 161-167 (2018). [Theor. Exp. Chem., 54, No. 3, 178-185 (2018) (English translation)], doi: 10.1007/s11237-018-9559-5.

  17. L. Beverina and P. Salice, Eur. J. Org. Chem., No. 7, 1207-1225 (2010), doi: https://doi.org/10.1002/ejoc.200901297.

  18. I. V. Kurdiukova, A. V. Kulinich, and A. A. Ishchenko, New J. Chem., 34, No. 8, 1564-1567 (2012), doi: https://doi.org/10.1039/C2NJ40303J.

    Article  Google Scholar 

  19. N. A. Davidenko, A. A. Ishchenko, and V. A. Pavlov, Zh. Nauchn. Prikl. Fotograf., 44, No. 2, 52-56 (1999).

    CAS  Google Scholar 

  20. N. A. Davidenko and A. A. Ishchenko, Fiz. Tverd. Tela, 42, No. 8, 1365-1371 (2000), doi: https://doi.org/10.1134/1.1307042.

    Article  Google Scholar 

  21. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett., 58, No. 25, 2921-2923 (1991), doi: https://doi.org/10.1063/1.105227.

    Article  Google Scholar 

  22. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals, Clarendon Press, Oxford (1982).

    Google Scholar 

  23. V. T. Avanesyan and M. Yu. Puchkov, Fiz. Tverd. Tela, 51, No. 10, 2052-2054 (2009), doi: https://doi.org/10.1134/S106378340910031X.

    Article  CAS  Google Scholar 

  24. A. A. Ishchenko, Teor. Éksp. Khim., 34, No. 4, 214-232 (1998). [Theor. Exp. Chem., 34, No. 4, 191-210 (1998) (English translation)], doi: 10.1007/BF02523249.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Davidenko.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 55, No. 2, pp. 95-100, March-April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidenko, N.A., Davidenko, I.I., Ishchenko, A.A. et al. Photoelectric Properties of Film Composites Derived from Poly-N-Epoxypropylcarbazole and Zwitter-Ionic Dyes. Theor Exp Chem 55, 103–109 (2019). https://doi.org/10.1007/s11237-019-09600-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-019-09600-x

Key words

Navigation