Skip to main content
Log in

Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We calculate the two-qubit disentanglement due to classical random telegraph noise using the quasi-Hamiltonian method. This allows us to obtain analytical results even for strong coupling and mixed noise, important when the qubits have tunable working point. We determine when entanglement sudden death and revival occur as functions of qubit working point, noise coupling strength and initial state entanglement. For extended Werner states, we show that the concurrence is related to the difference of two functions: one is related to dephasing and the other longitudinal relaxation. A physical interpretation based on the generalized Bloch vector is given: revival only occurs for strongly-coupled noise and comes from the angular motion of the vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  CAS  MathSciNet  ADS  Google Scholar 

  2. Gisin N., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  3. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MATH  MathSciNet  ADS  PubMed  Google Scholar 

  4. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wooters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  ADS  PubMed  Google Scholar 

  5. Shor P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26, 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  CAS  ADS  Google Scholar 

  7. Yu T., Eberly J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  CAS  MathSciNet  ADS  PubMed  Google Scholar 

  8. Almeida M.P., de Melo F., Hor-Meyll M., Salles A., Walborn S.P., Souto Ribeiro P.H., Davidovich L.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Laurat J., Choi K.S., Deng H., Chou C.W., Kimble H.J.: Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 9 3, 140404 (2004)

    Article  Google Scholar 

  11. Yu T., Eberly J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Yu T., Eberly J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393–397 (2006)

    Article  CAS  ADS  Google Scholar 

  13. Santos M.F., Milman P., Davidovich L., Zagury N.: Direct measurement of finite-time disentanglement induced by a reservoir. Phys. Rev. A 73, 040305(R) (2006)

    ADS  Google Scholar 

  14. Ficek Z., Tanaś R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74, 024304 (2006)

    Article  ADS  Google Scholar 

  15. Kogan S.: Electronic Noise and Fluctuations in Solids. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  16. Weissman M.B.: 1/f Noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988)

    Article  CAS  ADS  Google Scholar 

  17. Dutta P., Horn P.M.: Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53, 497–516 (1981)

    Article  CAS  ADS  Google Scholar 

  18. Yoshihara F., Harrabi K., Niskanen A.O., Nakamura Y., Tsai J.S.: Decoherence of flux qubits due to 1/f flux noise. Phys. Rev. Lett. 97, 167001 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  19. Kakuyanagi K., Meno T., Saito S., Nakano H., Semba K., Takayanagi H., Deppe F., Shnirman A.: Dephasing of a superconducting flux qubit. Phys. Rev. Lett. 98, 047004 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  20. Nakamura Y., Pashkin Y.A., Yamamoto T., Tsai J.S.: Charge echo in a Cooper-pair box. Phys. Rev. Lett. 88, 047901 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  21. Wellstood F.C., Urbina C., Clarke J.: Low-frequency noise in dc superconducting quantum interference devices below 1 k. Appl. Phys. Lett. 50, 772–774 (1987)

    Article  CAS  ADS  Google Scholar 

  22. Bialczak R.C., McDermott R., Ansmann M., Hofheinz M., Katz N., Lucero E., Neeley M., O’Connell A.D., Wang H., Cleland A.N., Martinis J.M.: 1/f Flux noise in Josephson phase qubits. Phys. Rev. Lett. 99, 187006 (2007)

    Article  ADS  PubMed  Google Scholar 

  23. Van Harlingen D.J., Robertson T.L., Plourde B.L.T., Reichardt P.A., Crane T.A., Clarke J.: Decoherence in Josephson-junction qubits due to critical-current fluctuations. Phys. Rev. B 70, 064517 (2004)

    Article  ADS  Google Scholar 

  24. Khaetskii A.V., Loss D., Glazman L.: Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002)

    Article  ADS  PubMed  Google Scholar 

  25. Bellomo B., Lo Franco R., Compagno G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Bellomo B., Lo Franco R., Compagno G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  27. Dajka J., Mierzejewski M., Luczka J.: Non-Markovian entanglement evolution of two uncoupled qubits. Phys. Rev. A 77, 042316 (2008)

    Article  ADS  Google Scholar 

  28. Mazzola L., Maniscalco S., Piilo J., Suominen K.-A., Garraway B.M.: Sudden death and sudden birth of entanglement in common structured reservoirs. Phys. Rev. A 79, 042302 (2009)

    Article  ADS  Google Scholar 

  29. Yu T., Eberly J.H.: Entanglement evolution in a non-Markovian environment. Opt. Commun. 283, 676–680 (2010)

    Article  CAS  ADS  Google Scholar 

  30. Testolin M.J., Cole J.H., Hollenberg L.C.L.: Modeling two-spin dynamics in a noisy environment. Phys. Rev. A 40, 042326 (2009)

    Article  ADS  Google Scholar 

  31. Yu T., Eberly J.H.: Phonon decoherence of quantum entanglement: robust and fragile states. Phys. Rev. B 66, 193306 (2002)

    Article  ADS  Google Scholar 

  32. Roszak K., Machnikowski P.: Complete disentanglement by partial pure dephasing. Phys. Rev. A 73, 022313 (2006)

    Article  ADS  Google Scholar 

  33. Ann K., Jaeger G.: Disentanglement and decoherence in two-spin and three-spin systems under dephasing. Phys. Rev. B 75, 115307 (2007)

    Article  ADS  Google Scholar 

  34. Cao X., Zheng H.: Non-Markovian disentanglement dynamics of a two-qubit system. Phys. Rev. A 77, 022320 (2008)

    Article  ADS  Google Scholar 

  35. Cheng B., Wang Q.H., Joynt R.: Transfer matrix solution of a model of qubit decoherence due to telegraph noise. Phys. Rev. A 78, 022313 (2008)

    Article  ADS  Google Scholar 

  36. Joynt, R., Zhou, D., Wang, Q.H.: Quasi-Hamiltonian method for computation of decoherence rates arXiv:0906.2843 (2009)

  37. Zhou D., Joynt R.: Noise-induced looping on the Bloch sphere: oscillatory effects in dephasing of qubits subject to broad-spectrum noise. Phys. Rev. A 81, 010103(R) (2010)

    ADS  Google Scholar 

  38. Galperin Y.M., Altshuler B.L., Bergli J., Shantsev D.V.: Non-Gaussian low-frequency noise as a source of qubit decoherence. Phys. Rev. Lett. 96, 097009 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  39. Galperin Y.M., Altshuler B.L., Bergli J., Shantsev D., Vinokur V.: Non-Gaussian dephasing in flux qubits due to 1/f noise. Phys. Rev. B 76, 064531 (2007)

    Article  ADS  Google Scholar 

  40. Paladino E., Faoro L., Falci G., Fazio R.: Decoherence and 1/f noise in Josephson qubits. Phys. Rev. Lett. 88, 228304 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  41. Falci G., D’Arrigo A., Mastellone A., Paladino E.: Initial decoherence in solid state qubits. Phys. Rev. Lett. 94, 167002 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  42. Byrd M.S., Khaneja N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A. 68, 062322 (2003) note our normalization of the Bloch vector differs from this reference

    Article  MathSciNet  ADS  Google Scholar 

  43. Braun D.: Creation of entanglement by interaction with a common heat bath. Phys. Rev. Lett. 89, 277901 (2002)

    Article  ADS  PubMed  Google Scholar 

  44. Kim M.S., Lee J., Ahn D., Knight P.L.: Entanglement induced by a single-mode heat environment. Phys. Rev. A 65, 040101(R) (2002)

    ADS  Google Scholar 

  45. Paz J.P., Roncaglia A.J.: Dynamics of the entanglement between two oscillators in the same environment. Phys. Rev. Lett. 100, 220401 (2008)

    Article  ADS  PubMed  Google Scholar 

  46. Slichter C.P.: Principles of Magnetic Resonance. 3rd edn. Springer, New York (1996)

    Google Scholar 

  47. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  CAS  ADS  Google Scholar 

  48. Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  PubMed  Google Scholar 

  49. Bertlmann, R.A., Krammer, P.: arXiv:0706.1743 (2007)

  50. Braunstein S.L., Caves C.M., Jozsa R., Linden N., Popescu S., Schack R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054–1057 (1999)

    Article  CAS  ADS  Google Scholar 

  51. Dür W., Cirac J.I., Tarrach R.: Separability and distillability of multiparticle quantum systems. Phys. Rev. Lett. 83, 3562–3565 (1999)

    Article  ADS  Google Scholar 

  52. Gurvits L., Barnum H.: Separable balls around the maximally mixed multipartite quantum states. Phys. Rev. A 68, 042312 (2003)

    Article  ADS  Google Scholar 

  53. Gurvits L., Barnum H.: Better bound on the exponent of the radius of the multipartite separable ball. Phys. Rev. A 72, 032322 (2005)

    Article  ADS  Google Scholar 

  54. Maniscalco S., Francica F., Zaffino R.L., Lo Gullo N., Plastina F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  MathSciNet  ADS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, D., Lang, A. & Joynt, R. Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise. Quantum Inf Process 9, 727–747 (2010). https://doi.org/10.1007/s11128-010-0165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0165-2

Keywords

Navigation