Skip to main content
Log in

Illustration of the development of bacterial cellulose bundles/ribbons by Gluconacetobacter xylinus via atomic force microscopy

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The development of bacterial cellulose (BC) fibrils biosynthesized by Gluconacetobacter xylinus was investigated using atomic force microscopy (AFM). After various incubation times at 30 °C, both the length of BC fibrils and their average diameters increased significantly. After the first 2-h incubation, not only single BC microfibrils with an average diameter of 5.8 ± 0.7 nm were biosynthesized but single microfibrils also began to bind with each other forming bundles. After longer incubation times of 6 h, 16 h, and 48 h, only BC bundles and ribbons or even only ribbons were detectable. The development of BC fibrils and the formation of BC bundles/ribbons along with the biosynthesis time were illustrated using AFM. Furthermore, single BC fibrils were twisted in a right-handed manner. The twisting of BC fibrils possibly promoted the formation of bigger ribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Boisset C, Fraschini C, Schulein M, Henrissat B, Chanzy H (2000) Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl Environ Microbiol 66(4):1444–1452. doi:10.1128/aem.66.4.1444-1452.2000

    Article  CAS  Google Scholar 

  • Brown RM (1999) Cellulose structure and biosynthesis. Pure Appl Chem 71:767–775

    Article  CAS  Google Scholar 

  • Brown RM, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569

    Article  CAS  Google Scholar 

  • Brown EE, Zhang J, Laborie M-PG (2011) Never-dried bacterial cellulose/fibrin composites: preparation, morphology and mechanical properties. Cellulose 18(3):631–641. doi:10.1007/s10570-011-9500-8

    Article  CAS  Google Scholar 

  • Cai Z, Kim J (2009) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17(1):83–91. doi:10.1007/s10570-009-9362-5

    Article  Google Scholar 

  • Colvin JR (1961) Twisting of bundles of bacterial cellulose microfibrils. J Polym Sci 49:473–477

    Article  CAS  Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54(3):597–606. doi:10.1021/jf051851z

    Article  CAS  Google Scholar 

  • Fink H, Putz HJ, Bohn A, Kunze J (1997) Investigation of the supramolecular structure of never dried bacterial cellulose. Macromol Symp 120:207–217

    Article  CAS  Google Scholar 

  • Gromet-Elhanan Z, Hestrin S (1963) Synthesis of cellulose by Acetobacter xylinum. VI. Growth on citric acid-cycle intermediates. J Bacteriol 85:284–292

    CAS  Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646

    Article  CAS  Google Scholar 

  • Haigler CH, White AR, Brown RM Jr, Cooper KM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol 94(1):64–69

    Article  CAS  Google Scholar 

  • Hanley SJ, Revol JF, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4(3):209–220

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. Biochem J 58:345–352

    CAS  Google Scholar 

  • Hirai A, Tsujii Y, Tsuji M, Horii F (2004) AFM observation of band-like cellulose assemblies produced by Acetobacter xylinum. Biomacromolecules 5(6):2079–2081. doi:10.1021/bm049747y

    Article  CAS  Google Scholar 

  • Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 10:2714–2717

    Article  CAS  Google Scholar 

  • Ishida T, Mitarai M, Sugano Y, Shoda M (2003) Role of water-soluble polysaccharides in bacterial cellulose production. Biotechnol Bioeng 83(4):474–478. doi:10.1002/bit.10690

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Liebner F, Haimer E, Wendland M, Neouze MA, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T (2010) Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10(4):349–352. doi:10.1002/mabi.200900371

    Article  CAS  Google Scholar 

  • Lin FC, Brown RM Jr, Cooper JB, Delmer DP (1985) Synthesis of fibrils in vitro by a solubilized cellulose synthase from Acetobacter xylinum. Science 230(4727):822–825. doi:10.1126/science.230.4727.822

    Article  CAS  Google Scholar 

  • McCann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant-cell wall. J Cell Sci 96:323–334

    Google Scholar 

  • Niimura H, Yokoyama T, Kimura S, Matsumoto Y, Kuga S (2010) AFM observation of ultrathin microfibrils in fruit tissues. Cellulose 17(1):13–18. doi:10.1007/s10570-009-9361-6

    Article  CAS  Google Scholar 

  • Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588. doi:10.1038/nnano.2010.15510.1038/NNANO.2010.155

    Article  CAS  Google Scholar 

  • Perotti GF, Barud HS, Messaddeq Y, Ribeiro SJL, Constantino VRL (2011) Bacterial cellulose–laponite clay nanocomposites. Polymer 52(1):157–163. doi:10.1016/j.polymer.2010.10.062

    Article  CAS  Google Scholar 

  • Quirk A, Lipkowski J, Vandenende C, Cockburn D, Clarke AJ, Dutcher JR, Roscoe SG (2010) Direct visualization of the enzymatic digestion of a single fiber of native cellulose in an aqueous environment by atomic force microscopy. Langmuir 26(7):5007–5013. doi:10.1021/la9037028

    Article  CAS  Google Scholar 

  • Röhmling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212

    Article  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35–58

    CAS  Google Scholar 

  • Seifert M, Hesse S, Kabrelian V, Klemm D (2004) Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J Polym Sci Pol Chem 42(3):463–470. doi:10.1002/Pola.10862

    Article  CAS  Google Scholar 

  • Suzuki S, Suzuki F, Kanie Y, Tsujitani K, Hirai A, Kaji H, Horii F (2012) Structure and crystallization of sub-elementary fibrils of bacterial cellulose isolated by using a fluorescent brightening agent. Cellulose 19(3):713–727. doi:10.1007/s10570-012-9678-4

    Article  CAS  Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In-vitro assembly of cellulose/xyloglucan networks—ultrastructural and molecular aspects. Plant J 8(4):491–504

    Article  CAS  Google Scholar 

  • Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T (2009) Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg 37(5):592–596. doi:10.1016/j.ejvs.2009.01.007

    Article  CAS  Google Scholar 

  • Xu C, Santschi PH, Schwehr KA, Hung CC (2009) Optimized isolation procedure for obtaining strongly actinide binding exopolymeric substances (EPS) from two bacteria (Sagittula stellata and Pseudomonas fluorescens Biovar II). Bioresour Technol 100(23):6010–6021. doi:10.1016/j.biortech.2009.06.008

    Article  CAS  Google Scholar 

  • Zaar K (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80(3):773–777

    Article  CAS  Google Scholar 

  • Zugenmaier P (2008) Crystalline cellulose and cellulose derivatives. Springer, Heidelberg

    Book  Google Scholar 

Download references

Acknowledgment

Financial support from LOEWE–Soft Control (Landes-Offensive zur Entwicklung Wissenschaftlich-oekonomischer Exzellenz) is gratefully acknowledged. No conflict of interest with any other financial organization regarding the materials in this manuscript is declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K. Illustration of the development of bacterial cellulose bundles/ribbons by Gluconacetobacter xylinus via atomic force microscopy. Appl Microbiol Biotechnol 97, 4353–4359 (2013). https://doi.org/10.1007/s00253-013-4752-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4752-x

Keywords

Navigation