Skip to main content

Advertisement

Log in

A new tunable light-emitting and π-stacked hexa-ethyleneglycol naphthalene-bisimide oligomer: synthesis, photophysics and electrochemical properties

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

An oligomer (3) containing flexible hydrophilic hexa(ethylene glycol) and hydrophobic naphthalene-bisimide chromophores has been synthesized by a one-step condensation reaction and its photophysical and electrochemical properties were investigated. 3 was characterized through the data from NMR, IR, UV-vis, GPC, DSC, TGA, elemental analysis and cyclic voltammetry. The average molecular weight (Mw) of 3 was 4430 g mol−1. Intrinsic viscosity was measured as 0.28 dL g−1 in m-cresol at 25 °C. It has high thermal stability (Td = 325 °C). Interestingly, compound 3 shows excimer-like emission in all kinds of solvents. The band gap energy (Eg), LUMO and HOMO energy values in nonpolar and polar protic solvents were 2.71 eV/3.12 eV, −3.69 eV/−3.88 eV and −6.40 eV/−7.00 eV for 3, respectively. The oligomer showed concentration and solvent dependent fluorescent color tunability. Remarkably, the fluorescent colors of the excimer emissions at 10−6 M concentration in CHCl3, DMF and MeOH are light yellow, light blue-yellow and strong blue, respectively, and become more intense at higher concentrations. The excimer emission color in CHCl3 and DMF is fluorescent yellow and changed to green in MeOH at10−4 M concentration. 3 shows two reversible reduction steps at −1.103 and −1.457 V (vs. ferrocene/ferrocenium) in nonpolar solvent CH2Cl2 and only one at −0.917 V in (50: 50) CH3OH-CH3CN binary solvent mixture with higher reversibility. Strong blue-shifts of emission band were noted in protic solvents, which confirm the existence of a negative solvatochromism probably due to protonation. The strong solvent-dependent photophysical and electrochemical properties, including the large shift of excimer emission maximum reflecting self-assembly mediated through hydrogen bonding and π-stacking interactions, make the oligomer a potential candidate for various photo-sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Michot, D. Baril and M. Armand, Polyimide-polyether mixed conductors as switchable materials for electrochromic devices, Sol. Energy Mater. Sol. Cells, 1995, 39, 289–299.

    Article  CAS  Google Scholar 

  2. H. Icil and S. Icli, Synthesis and properties of a new pho-tostable polymer: Perylene-3,4,9,10-tetracarboxylic acid-bis-(N,N′-dodecylpolyimide), J. Polym. Sci., Part A: Polym. Chem., 1997, 35, 2137–2142.

    Article  CAS  Google Scholar 

  3. M. S. Cubberley and B. L. Iverson, 1H NMR investigation of solvent effects in aromatic stacking interactions, J. Am. Chem. Soc., 2001, 123, 7560–7563.

    Article  CAS  Google Scholar 

  4. Y. Yin, O. Yamada, K. Tanaka and K. I. Okamoto, On the development of naphthalene-based sulfonated polyimide membranes for fuel cell applications, Polym. J., 2006, 38, 197–219.

    Article  CAS  Google Scholar 

  5. K. Yuney and H. Icil, Synthesis, photochemical, and electrochemical properties of naphthalene-1,4,5,8-tetracarboxylic acid-bis-(N, N′-bis-(2,2,4(2,4,4)-trimethylhexylpolyimide)) and poly(N, N′-bis-(2,2,4(2,4,4)-trimethyl-6-aminohexyl)3,4,9,10-peryl-enetetracarboxdiimide), Eur. Polym. J., 2007, 43, 2308–2320.

    Article  CAS  Google Scholar 

  6. J. B. Bodapati and H. Icil, Highly soluble perylene diimide and oligomeric diimide dyes combining perylene and hexa(ethylene glycol) units: Synthesis, characterization, optical and electrochemical properties, Dyes Pigm., 2008, 79, 224–235.

    Article  CAS  Google Scholar 

  7. B. Jancy and S. K. Asha, Synthesis and self-organization properties of copolyurethanes based on perylenediimide and naphthalenediimide units, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 1224–1235.

    Article  CAS  Google Scholar 

  8. S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann, B. W. Greenland, P. J. F. Harris, W. Hayes, M. E. Mackay and S. J. Rowan, A Self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor π-π stacking interactions, Chem. Commun., 2009, 6717–6719.

    Google Scholar 

  9. Y. Morisaki, J. A. Fernandes and Y. Chujo, Naphthalene-based oligothiophene-stacked polymers, Polym. J., 2010, 42, 928–934.

    Article  CAS  Google Scholar 

  10. C. A. V. Walree, V. E. M. Kaats-Richters, L. W. Jenneskens, R. M. Williams and I. H. M. V. Stokkum, Intramolecular excimer and exciplex emission of 1,4-dipyrenyl substituted cyclohexasilane, Chem. Phys. Lett., 2002, 355, 65–70.

    Article  Google Scholar 

  11. L. H. Gade, C. H. Galka, R. M. Williams, L. D. Cola, M. McPartlin, B. Dong and L. Chi, Synthesis, photophysical properties, and nanocrystal formation of a new class of tetra-n-substituted perylenes, Angew. Chem., Int. Ed., 2003, 42, 2677–2681.

    Article  CAS  Google Scholar 

  12. B. Dong, C. H. Galka, L. H. Gade, L. Chi and R. M. Williams, Hydrogen-bond assisted formation of rod shaped organic nanocrys-tals: Control of the aggregational state and structural elucidation, Nanopages, 2006, 1, 325–328.

    Article  Google Scholar 

  13. D. Veldman, S. M. A. Chopin, S. C. J. Meskers, M. M. Groeneveld, R. M. Williams and R. A. J. Janssen, Triplet formation involving a polar transition state in a well-defined intramolecular perylenediimide dimeric aggregate, J. Phys. Chem. A, 2008, 112, 5846–5857.

    Article  CAS  Google Scholar 

  14. C. Hippius, I. H. M. V. Stokkum, E. Zangrando, R. M. Williams, M. Wykes, D. Beljonne and F. Würthner, Ground- and Excited-state pinched cone equilibria in calix[4]arenes bearing two perylene bisimide dyes, J. Phys. Chem. C, 2008, 112, 14626–14638.

    Article  CAS  Google Scholar 

  15. C. Thalacker, C. Röger and F. Würthner, Synthesis and optical and redox properties of core-substituted naphthalene diimide dyes, J. Org. Chem., 2006, 71, 8098–8105.

    Article  CAS  Google Scholar 

  16. C. Röger, M. G. Müller, M. Lysetska, Y. Miloslavina, A. R. Holzwarth and F. Würthner, Efficient energy transfer from peripheral chro-mophores to the self-assembled zinc chlorin rod antenna: a bioinspired light-harvesting system to bridge the “green gap”, J. Am. Chem. Soc., 2006, 128, 6542–6543.

    Article  Google Scholar 

  17. C. Röger and F. Würthner, Core-tetrasubstituted naphthalene diimides: Synthesis, optical properties, and redox characteristics, J. Org. Chem., 2007, 72, 8070–8075.

    Article  Google Scholar 

  18. C. Röger, Y. Miloslavina, D. Brunner, A. R. Holzwarth and F. Würthner, Self-assembled zinc chlorin rod antennae powered by peripheral light-harvesting chromophores, J. Am. Chem. Soc., 2008, 130, 5929–5939.

    Article  Google Scholar 

  19. E. S-. Balcerzak, A. Iwan, M. Krompiec, M. Siwy, D. Tapa, A. Sikora and M. Palewicz, New thermotropic azomethine-naphthalene diimides for optoelectronic applications, Synth. Met., 2010, 160, 2208–2218.

    Article  Google Scholar 

  20. S. V. Bhosale, C. H. Jani and S. J. Langford, Chemistry of naphthalene diimides, Chem. Soc. Rev., 2008, 37, 331–342.

    Article  CAS  Google Scholar 

  21. J. G. Hansen, N. Feeder, D. G. Hamilton, M. J. Gunter, J. Becher and J. K. M. Sanders, Macrocyclization and molecular interlocking via mitsunobu alkylation: Highlighting the role of C-H ··· O interactions in templating, Org. Lett., 2000, 2, 449–452.

    Article  CAS  Google Scholar 

  22. X. Z. Wang, X. Q. Li, X. B. Shao, X. Zhao, P. Deng, X. K. Jiang, Z. T. Li and Y. Q. Chen, Selective rearrangements of quadruply hydrogen-bonded dimer driven by donor-acceptor interaction, Chem.-Eur. J., 2003, 9, 2904–2913.

    Article  CAS  Google Scholar 

  23. V. Steullet and D. W. Dixon, Self-stacking of naphthalene bis(dicarboximide)s probed by NMR, J. Chem. Soc., Perkin Trans. 2, 1999, 1547–1558.

    Google Scholar 

  24. X. Q. Li, D. J. Feng, X. K. Jiang and Z. T. Li, Donor-acceptor interaction-mediated arrangement of hydrogen bonded dimers, Tetrahedron, 2004, 60, 8275–8284.

    Article  CAS  Google Scholar 

  25. O. Johansson, H. Wolpher, M. Borgström, L. Hammarström, J. Bergquist, L. Sun and B. Akermark, Intramolecular charge separation in a hydrogen bonded tyrosine-ruthenium(II)-naphthalene diimide triad, Chem. Commun., 2004, 194–195.

    Google Scholar 

  26. M. Tomasulo, D. M. Naistat, A. J. P. White, D. J. Williams and F. M. Raymo, Self-assembly of naphthalene diimides into cylindrical microstructures, Tetrahedron Lett., 2005, 46, 5695–5698.

    Article  CAS  Google Scholar 

  27. Y. Ofir, A. Zelichenok and S. Yitzchaik, 1,4;5,8-naphthalene-tetracarboxylic diimide derivatives as model compounds for molecular layer epitaxy, J. Mater. Chem., 2006, 16, 2142–2149.

    Article  CAS  Google Scholar 

  28. Z. Merican, K. D. Johnstone and M. J. Gunter, Porphyrin-naphthodiimide interactions as a structural motif in foldamers and supramolecular assemblies, Org. Biomol. Chem., 2008, 6, 2534–2543.

    Article  CAS  Google Scholar 

  29. G. Koshkakaryan, L. M. Klivansky, D. Cao, M. Snauko, S. J. Teat, J. O. Struppe and Y. Liu, Alternative donor-acceptor stacks from crown ethers and naphthalene diimide derivatives: Rapid, selective formation from solution and solid state grinding, J. Am. Chem. Soc., 2009, 131, 2078–2079.

    Article  CAS  Google Scholar 

  30. S. V. Bhosale, C. Jani, C. H. Lalander and S. J. Langford, Solvophobic control of core-substituted naphthalene diimide nanostructures, Chem. Commun., 2010, 46, 973–975.

    Article  CAS  Google Scholar 

  31. H. Shao and J. R. Parquette, A p-conjugated hydrogel based on an fmoc-dipeptide naphthalene diimide semiconductor, Chem. Commun., 2010, 46, 4285–4287.

    Article  CAS  Google Scholar 

  32. P. M. Alvey, J. J. Reczek, V. Lynch and B. L. Iverson, A systematic study of thermochromic aromatic donor-acceptor materials, J. Org. Chem., 2010, 75, 7682–7690.

    Article  CAS  Google Scholar 

  33. A. J. Zych and B. L. Iverson, Synthesis and conformational characterization of tethered, self-complexing 1,5-dialkoxynaphthalene/1,4,5,8-naphthalenetetracarboxylic diimide systems, J. Am. Chem. Soc., 2000, 122, 8898–8909.

    Article  CAS  Google Scholar 

  34. S. G. Ramkumar and S. Ramakrishnan, Understanding the folding process of synthetic polymers by small-molecule folding agents, J. Chem. Sci., 2008, 120, 187–194.

    Article  CAS  Google Scholar 

  35. N. J. Turro, Molecular Photochemistry, ed. New York, W. A. Benjamin, Inc., 1965, pp. 4–48.

    Google Scholar 

  36. Z. Peng, Z. Bao and M. E. Galvin, Polymers with bipolar carrier transport abilities for light emitting diodes, Chem. Mater., 1998, 10, 2086–2090.

    Article  CAS  Google Scholar 

  37. J. L. Bredas, R. Silbey, D. S. Boudreaux and R. R. Chance, Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole, J. Am. Chem. Soc., 1983, 105, 6555–6559.

    Article  CAS  Google Scholar 

  38. A. J. Bard and L. R. Faulkner, Electrochemical methods, fundamentals and applications, New York, Wiley & Sons Inc., 1980.

    Google Scholar 

  39. S. Asir, A. S. Demir and H. Icil, The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides: Photophysical, electrochemical, chiroptical and intramolecular charge transfer properties, Dyes Pigm., 2010, 84, 1–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huriye Icil.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c1pp05019b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodapati, J.B., Icil, H. A new tunable light-emitting and π-stacked hexa-ethyleneglycol naphthalene-bisimide oligomer: synthesis, photophysics and electrochemical properties. Photochem Photobiol Sci 10, 1283–1293 (2011). https://doi.org/10.1039/c1pp05019b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05019b

Navigation