Skip to main content
Log in

Self-assembly and ordering of C60 on the WO2/W(110) surface

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The growth and ordering of C60 molecules on the WO2/W(110) surface have been studied by low-temperature scanning tunnelling microscopy and spectroscopy (STM and STS), low-energy electron diffraction (LEED), and density functional theory (DFT) calculations. The results indicate the growth of a well-ordered C60 layer on the WO2/W(110) surface in which the molecules form a close-packed hexagonal structure with a unit cell parameter equal to 0.95 nm. The nucleation of the C60 layer starts at the substrate’s inner step edges. Low-temperature STM of C60 molecules performed at 78 K demonstrates well-resolved molecular orbitals within individual molecules. In the C60 monolayer on the WO2/W(110) surface, the molecules are aligned in one direction due to intermolecular interaction, as shown by the ordered molecular orbitals of individual C60. STS data obtained from the C60 monolayer on the WO2/W(110) surface are in good agreement with DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barth, J. V. Molecular architectonic on metal surfaces. Ann. Rev. Phys. Chem. 2007, 58, 375–407.

    Article  CAS  Google Scholar 

  2. Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.

    Article  CAS  Google Scholar 

  3. Barlow, S. M.; Raval, R. Complex organic molecules at metal surfaces: Bonding, organization, and chirality. Surf. Sci. Rep. 2003, 50, 201–341.

    Article  CAS  Google Scholar 

  4. Rosei, F.; Schunack, M.; Naitoh, Y.; Jiang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Properties of large organic molecules on metal surfaces. Prog. Surf. Sci. 2003, 71, 95–146.

    Article  CAS  Google Scholar 

  5. Krasnikov, S. A.; Sergeeva, N. N.; Sergeeva, Y. N.; Senge, M. O.; Cafolla, A. A. Self-assembled rows of Ni porphyrin dimers on the Ag(111) surface. Phys. Chem. Chem. Phys. 2010, 12, 6666–6671.

    Article  CAS  Google Scholar 

  6. Schnadt, J.; Xu, W.; Vang, R. T.; Knudsen, J.; Li, Z.; Lægsgaard, E.; Besenbacher, F. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures. Nano Res. 2010, 3, 459–471.

    Article  CAS  Google Scholar 

  7. Krasnikov, S. A.; Beggan, J. P.; Sergeeva, N. N.; Senge, M. O.; Cafolla, A. A. Ni(II) porphine nanolines grown on a Ag(111) surface at room temperature. Nanotechnology 2009, 20, 135301.

    Article  CAS  Google Scholar 

  8. Liang, H.; He, Y.; Ye, Y. C.; Xu, X. G.; Cheng, F.; Sun, W.; Shao, X.; Wang, Y. F.; Li, J. L.; Wu, K. Two-dimensional molecular porous networks constructed by surface assembling. Coord. Chem. Rev. 2009, 253, 2959–2979.

    Article  CAS  Google Scholar 

  9. Beggan, J. P.; Krasnikov, S. A.; Sergeeva, N. N.; Senge, M. O.; Cafolla, A. A. Self-assembly of Ni(II) porphine molecules on the Ag/Si(111)-(√3 × √3) · R30° surface studied by STM/STS and LEED. J. Phys.: Condens. Matter 2008, 20, 015003.

    Article  Google Scholar 

  10. Krasnikov, S. A.; Hanson, C. J.; Brougham, D. F.; Cafolla, A. A. Dimer ordering of CuTtertBuPc molecules on the Ag/Si(111)-(√3 × √3) · R30° surface: A scanning tunnelling microscopy/spectroscopy study. J. Phys.: Condens. Matter 2007, 19, 446005.

    Article  Google Scholar 

  11. van der Molen, S. J.; Liljeroth, P. Charge transport through molecular switches. J. Phys.: Condens. Matter 2010, 22, 133001.

    Article  Google Scholar 

  12. Fichou, D. Structural order in conjugated oligothiophenes and its implications on opto-electronic devices. J. Mater. Chem. 2000, 10, 571–588.

    Article  CAS  Google Scholar 

  13. Bonifazi, D.; Enger, O.; Diederich, F. Supramolecular [60]_fullerene chemistry on surfaces. Chem. Soc. Rev. 2007, 36, 390–414.

    Article  CAS  Google Scholar 

  14. Xenogiannopoulou, E.; Medved, M.; Iliopoulos, K.; Couris, S.; Papadopoulos, M. G.; Bonifazi, D.; Sooambar, C.; Mateo-Alonso, A.; Prato, M. Nonlinear optical properties of ferrocene- and porphyrin-[60]fullerene dyads. ChemPhysChem 2007, 8, 1056–1064.

    Article  CAS  Google Scholar 

  15. Park, H.; Park, J.; Lim, A. K. L.; Anderson, E. H.; Alivisatos, A. P.; McEuen, P. L. Nanomechanical oscillations in a single-C-60 transistor. Nature 2000, 407, 57–60.

    Article  Google Scholar 

  16. Hebard, A. F.; Rosseinsky, M. J.; Haddon, R. C.; Murphy, D. W.; Glarum, S. H.; Palstra, T. T. M.; Ramirez, A. P.; Kortan, A. R. Superconductivity at 18 K in potassium-doped C60. Nature 1991, 350, 600–601.

    Article  CAS  Google Scholar 

  17. Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. Superconductivity at 33 K in CsxRbyC60. Nature 1991, 352, 222–223.

    Article  CAS  Google Scholar 

  18. Nakaya, M.; Tsukamoto, S.; Kuwahara, Y.; Aono, M.; Nakayama, T. Molecular scale control of unbound and bound C60 for topochemical ultradense data storage in an ultrathin C60 film. Adv. Mater. 2010, 22, 1622–1625.

    CAS  Google Scholar 

  19. Joachim, C.; Gimzewski, J. K.; Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548.

    Article  CAS  Google Scholar 

  20. Hiorns, R. C.; Cloutet, E.; Ibarboure, E.; Vignau, L.; Lemaitre, N.; Guillerez, S.; Absalon, C.; Cramail, H. Main-chain fullerene polymers for photovoltaic devices. Macromolecules 2009, 42, 3549–3558.

    Article  CAS  Google Scholar 

  21. Zhang, X.; Tang, L.; Guo, Q. Low-temperature growth of C60 monolayers on Au(111): Island orientation control with site-selective nucleation. J. Phys. Chem. C 2010, 114, 6433–6439.

    Article  CAS  Google Scholar 

  22. Gardener, J. A.; Briggs, G. A. D.; Castell, M. R. Scanning tunneling microscopy studies of C60 monolayers on Au(111). Phys. Rev. B 2009, 80, 235434.

    Article  Google Scholar 

  23. Diaconescu, B.; Yang, T.; Berber, S.; Jazdzyk, M.; Miller, G. P.; Tománek, D.; Pohl, K. Molecular self-assembly of functionalized fullerenes on a metal surface. Phys. Rev. Lett. 2009, 102, 056102.

    Article  Google Scholar 

  24. Li, H. I.; Franke, K. J.; Pascual, J. I.; Bruch, L. W.; Diehl, R. D. Origin of Moiré structures in C60 on Pb(111) and their effect on molecular energy levels. Phys. Rev. B 2009, 80, 085415.

    Article  Google Scholar 

  25. Grobis, M.; Yamachika, R.; Wachowiak, A.; Lu, X.; Crommie, M. F. Phase separation and charge transfer in a K-doped C60 monolayer on Ag(001). Phys. Rev. B 2009, 80, 073410.

    Article  Google Scholar 

  26. Zhang, X.; He, W.; Zhao, A.; Li, H.; Chen, L.; Pai, W. W.; Hou, J.; Loy, M. M. T.; Yang, J.; Xiao, X. Geometric and electronic structure of a C60 monolayer on Ag(100). Phys. Rev. B 2007, 75, 235444.

    Article  Google Scholar 

  27. Rogero, C.; Pascual, J. I.; Gómez-Herrero, J.; Baró, A. M. Resolution of site-specific bonding properties of C60 adsorbed on Au(111). J. Chem. Phys. 2002, 116, 832–836.

    Article  CAS  Google Scholar 

  28. Grobis, M.; Lu, X.; Crommie, M. F. Local electronic properties of a molecular monolayer: C60 on Ag(001). Phys. Rev. B 2002, 66, 161408.

    Article  Google Scholar 

  29. Schulze, G.; Franke, K. J.; Pascual, J. I. Resonant heating and substrate-mediated cooling of a single C60 molecule in a tunnel junction. New J. Phys. 2008, 10, 065005.

    Article  Google Scholar 

  30. Schull, G.; Néel, N.; Becker, M.; Kröger, J.; Berndt, R. Spatially resolved conductance of oriented C60. New J. Phys. 2008, 10, 065012.

    Article  Google Scholar 

  31. Schull, G.; Berndt, R. Orientationally ordered (7 × 7) super-structure of C60 on Au(111). Phys. Rev. Lett. 2007, 99, 226105.

    Article  CAS  Google Scholar 

  32. Pai, W. W.; Hsu, C. L.; Lin, M. C.; Lin, K. C.; Tang, T. B. Structural relaxation of adlayers in the presence of adsorbate-induced reconstruction: C60/Cu(111). Phys. Rev. B 2004, 69, 125405.

    Article  Google Scholar 

  33. Abel, M.; Dmitriev, A.; Fasel, R.; Lin, N.; Barth, J. V.; Kern, K. Scanning tunneling microscopy and x-ray photoelectron diffraction investigation of C60 films on Cu(100). Phys. Rev. B 2003, 67, 245407.

    Article  Google Scholar 

  34. Hsu, C. L.; Pai, W. W. Aperiodic incommensurate phase of a C60 monolayer on Ag(100). Phys. Rev. B 2003, 68, 245414.

    Article  Google Scholar 

  35. Weckesser, J.; Cepek, C.; Fasel, R.; Barth, J. V.; Baumberger, F.; Greber, T.; Kern, K. Binding and ordering of C60 on Pd(110): Investigations at the local and mesoscopic scale. J. Chem. Phys. 2001, 115, 9001–9009.

    Article  CAS  Google Scholar 

  36. Murray, P. W.; Pedersen, M. è.; Lægsgaard, E.; Stensgaard, I.; Besenbacher, F. Growth of C60 on Cu(110) and Ni(110) surfaces: C60-induced interfacial roughening. Phys. Rev. B 1997, 55, 9360.

    Article  CAS  Google Scholar 

  37. Li, Y. Z.; Patrin, J. C.; Chander, M.; Weaver, J. H.; Chibante, L. P. F.; Smalley, R. E. Ordered overlayers of C60 on GaAs(110) studied with scanning tunneling microscopy. Science 1991, 252, 547–548.

    Article  CAS  Google Scholar 

  38. Li, Y. Z.; Chander, M.; Patrin, J. C.; Weaver, J. H.; Chibante, L. P. F.; Smalley, R. E. Order and disorder in C60 and KxC60 multilayers: Direct imaging with scanning tunneling microscopy. Science 1991, 253, 429–433.

    Article  CAS  Google Scholar 

  39. Hou, J. G.; Yang, J. L.; Wang, H. Q.; Li, Q. X.; Zeng, C. G.; Lin, H.; Bing, W.; Chen, D. M.; Zhu, Q. S. Identifying molecular orientation of individual C60 on a Si(111)-(7 × 7) surface. Phys. Rev. Lett. 1999, 83, 3001–3004.

    Article  CAS  Google Scholar 

  40. Pascual, J. I.; Gómez-Herrero, J.; Rogero, C.; Baró, A. M.; Sánchez-Portal, D.; Artacho, E.; Ordejón, P.; Soler, J. M. Seeing molecular orbitals. Chem. Phys. Lett. 2000, 321, 78–82.

    Article  CAS  Google Scholar 

  41. Dunn, A. W.; Svensson, E. D.; Dekker, C. Scanning tunneling spectroscopy of C60 adsorbed on Si(100)-(2 × 1). Surf. Sci. 2002, 498, 237–243.

    Article  CAS  Google Scholar 

  42. Lu, C.; Zhu, E.; Liu, Y.; Liu, Z.; Lu, Y.; He, J.; Yu, D.; Tian, Y.; Xu, B. C60 on nanostructured Nb-doped SrTiO3(001) surfaces. J. Phys. Chem. C 2010, 114, 3416–3421.

    Article  CAS  Google Scholar 

  43. Loske, F.; Bechstein, R.; Schütte, J.; Ostendorf, F.; Reichling, M.; Kühnle, A.; Growth of ordered C60 islands on TiO2(110). Nanotechnology 2009, 20, 065606.

    Article  Google Scholar 

  44. Carvalho, A. J. P.; Ramalho, J. P. P. Molecular simulation of C60 adsorption onto a TiO2 rutile (110) surface. Appl. Surf. Sci. 2010, 256, 5365–5369.

    Article  CAS  Google Scholar 

  45. Nilius, N. Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy. Surf. Sci. Rep. 2009, 64, 595–659.

    Article  CAS  Google Scholar 

  46. Henrich, V. E.; Cox, P. A. The surface science of metal oxides; Cambridge University Press: Cambridge, 1994.

    Google Scholar 

  47. Noguera, C. Physics and chemistry of oxide surfaces; Cambridge University Press: Cambridge, 1996.

    Book  Google Scholar 

  48. Dedkov, Y. S.; Vinogradov, A. S.; Fonin, M.; König, C.; Vyalikh, D. V.; Preobrajenski, A. B.; Krasnikov, S. A.; Kleimenov, E. Y.; Nesterov, M. A.; Rüdiger, U.; et al. Correlations in the electronic structure of half-metallic ferromagnetic CrO2 films: An x-ray absorption and resonant photoemission spectroscopy study. Phys. Rev. B 2005, 72, 060401.

    Article  Google Scholar 

  49. Krasnikov, S. A.; Vinogradov, A. S.; Hallmeier, K. H.; Höhne, R.; Ziese, M.; Esquinazi, P.; Chassé, T.; Szargan, R. Oxidation effects in epitaxial Fe3O4 layers on MgO and MgAl2O4 substrates studied by x-ray absorption, fluorescence, and photoemission. Mater. Sci. Eng. B 2004, 109, 207–212.

    Article  Google Scholar 

  50. Radican, K.; Bozhko, S. I.; Vadapoo, S. R.; Ulucan, S.; Wu, H. C.; McCoy, A.; Shvets, I. V. Oxidation of W(110) studied by LEED and STM. Surf. Sci. 2010, 604, 1548–1551.

    Article  CAS  Google Scholar 

  51. Krasnikov, S. A.; Murphy, S.; Berdunov, N.; McCoy, A. P.; Radican, K.; Shvets, I. V. Self-limited growth of triangular PtO2 nanoclusters on the Pt(111) surface. Nanotechnology 2010, 21, 335301.

    Article  CAS  Google Scholar 

  52. Radican, K.; Berdunov, N.; Shvets, I. V. Studies of the periodic faceting of epitaxial molybdenum oxide grown on Mo(110). Phys. Rev. B 2008, 77, 085417.

    Article  Google Scholar 

  53. Radican, K.; Berdunov, N.; Manai, G.; Shvets, I. V. Epitaxial molybdenum oxide grown on Mo(110): LEED, STM, and density functional theory calculations. Phys. Rev. B 2007, 75, 155434.

    Article  Google Scholar 

  54. Lu, X.; Grobis, M.; Khoo, K. H.; Louie, S. G.; Crommie, M. F. Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study. Phys. Rev. B 2004, 70, 115418.

    Article  Google Scholar 

  55. Lu, X.; Grobis, M.; Khoo, K. H.; Louie, S. G.; Crommie, M. F. Spatially mapping the spectral density of a single C60 molecule. Phys. Rev. Lett. 2003, 90, 096802.

    Article  Google Scholar 

  56. Giudice, E.; Magnano, E.; Rusponi, S.; Boragno, C.; Valbusa, U. Morphology of C60 thin films grown on Ag(001). Surf. Sci. 1998, 405, L561–L565.

    Article  CAS  Google Scholar 

  57. Altman, E. I.; Colton, R. J. Determination of the orientation of C60 adsorbed on Au(111) and Ag(111). Phys. Rev. B 1993, 48, 18244.

    Article  CAS  Google Scholar 

  58. Tsukamoto, S.; Nakayama, T.; Aono, M. Stable molecular orientations of a C60 dimer in a photoinduced dimer row. Carbon 2007, 45, 1261–1266.

    Article  CAS  Google Scholar 

  59. Nakaya, M.; Kuwahara, Y.; Aono, M.; Nakayama, T. Reversibility-controlled single molecular level chemical reaction in a C60 monolayer via ionization induced by scanning transmission microscopy. Small 2008, 4, 538–541.

    Article  CAS  Google Scholar 

  60. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  61. Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569.

    Article  CAS  Google Scholar 

  62. Methfessel, M.; Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621.

    Article  CAS  Google Scholar 

  63. Sau, J. D.; Neaton, J. B.; Choi, H. J.; Louie, S. G.; Cohen, M. L. Electronic energy levels of weakly coupled nanostructures: C60-metal interfaces. Phys. Rev. Lett. 2008, 101, 026804.

    Article  Google Scholar 

  64. Rivelino, R.; de Brito Mota, F. Band gap and density of states of the hydrated C60 fullerene system at finite temperature. Nano Lett. 2007, 7, 1526–1531.

    Article  CAS  Google Scholar 

  65. Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Krasnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasnikov, S.A., Bozhko, S.I., Radican, K. et al. Self-assembly and ordering of C60 on the WO2/W(110) surface. Nano Res. 4, 194–203 (2011). https://doi.org/10.1007/s12274-010-0070-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-010-0070-0

Keywords

Navigation